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Valid assumptions required:

Correlation measures are often major drivers of value-at-risk. Brett Humphreys 

and Eric Raleigh review the assumptions associated with calculating correlation

H Few market participants have a simple long or short position. 
Instead, native long or short positions are hedged, sometimes 
with perfectly matching instruments but more frequently with 
related assets. The effectiveness of these hedges is driven by 
the strength of correlation between two assets. Because of this, 
value-at-risk and changes in VAR are fundamentally dependent 
upon correlation and changes in correlation. 

The statistical definition of correlation is the covariance 
between two variables divided by the standard deviation of 
each variable:

ρ =
cov XY( )
σ xσ y

By definition, correlation must be between minus one and 
one. Because of this standardisation, we tend to discuss the 
relationship between two series in terms of correlation rather 
than covariance. Of course, even this calculation requires 
many assumptions.

To see the impact of correlation on VAR consider the 
following portfolio – long $1 million of asset 1 and short $1 
million of asset 2. Assume both assets have an annual volatility 
of 40%. Figure 1 shows how the VAR of this position changes 
as the correlation between asset 1 and asset 2 changes. The 
first thing we can see from this figure is that if the correla-

tion is less than 50%, the risk of the portfolio is greater than 
the risk of one leg. In other words, we need at least a positive 
50% correlation to use an asset as a hedge. If we want to cut 
the risk in half, we need at least an 85% correlation between 
the two assets.1 

The figure also shows that the relationship between VAR 
and correlation is not linear. In fact, at extremely high corre-
lations (greater than 95%) slight correlation changes can have 
significant effects on VAR. At first glance, we might say there 
is little difference between a correlation of 99% and 96%. 
However, the portfolio with a 96% correlation has a VAR 
twice as large as that based upon a 99% correlation. When we 
consider that there is uncertainty in our estimates of correla-
tion, we can easily see how slight variations can have a signifi-
cant impact on VAR. 

One issue is that frequently we calculate a correla-
tion measure and think we understand what it means. For 
example, assume we are told that two assets have a correlation 
of 80%. Mentally, we have an image of what we expect the 
joint distribution of these two assets to look like. Examine the 
four graphs in figure 2. Each of these data sets has a correla-
tion of 80%. In addition, each series has the same mean and 
standard deviation. In reality, when we are told something has 
a correlation of 80% we assume a relationship like figure 2c 
– in other words, we assume underlying normal distributions 
of the data. However, that might not always be the case. We 
must remember that correlation is simply a statistical measure 
of joint dispersion between two distributions and can be 
calculated on any distribution. 

The problem as usual comes down to assumptions. As 
correlation calculations are fundamentally related to volatility 
calculation, correlation embeds those assumptions: 
• A functional form (geometric Brownian motion, mean 
reversion, etc) of the two underlying price processes.
• The historical data set is appropriate for predicting future 
correlations.0
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F1. Sensitivity of VAR to correlation 

1. It is worth noting that hedge effectiveness testing for hedge accounting treatment occasionally refers to 
a ‘correlation’ between an asset and its hedge of 0.8 and 1.2. This is not a statistical measure of corre-
lation. It is instead the predicted change in hedge value given a specific change in asset value. However, 
the true statistical correlation is extremely important to ensure that the hedge will remain effective 
through time. In a regression analysis, correlation is equivalent to regression √R2. Without a high R2, 
the hedge will not effectively mitigate risk and large portions of profit and loss will be deemed ineffective

calculating correlation
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• The underlying distributions are normally distributed.
In addition, the standard correlation calculation includes two 

other important assumptions:
• The relationship between the two series is linear.
• The relationship between the two series is constant.

A linear relationship
It is important to realise that a correlation calculation fits a 
line to a data set. The closer the data is to that line, the higher 
the calculated correlation. The problem is that the relationship 
may be more complex than this assumption implies. In figure 
2a, we see that the change in Y can be perfectly predicted 
given the change in X. However, the change is not a simple 
linear relationship. In this situation, it should be possible to 
perfectly hedge an exposure to X with Y even though the 
naive correlation calculation is 80%. 

While figure 2a represents a hypothetical example, there are 
more realistic scenarios. Consider the relationship between 
changes in implied volatility and price. We would expect 
that both significant increases and decreases in price would 
lead to increases in implied volatility. In a previous analysis 
examining the correlation between changes in implied vola-
tility and prices, we found that changes in implied volatilities 
had a +22% correlation with positive changes in price and a 
–28% correlation with negative changes in price.2 In this case, 

ignoring the more complex dynamics between volatility and 
price would lead to a mis-estimation of the correlation and 
potentially the risk of a portfolio containing options.

A constant relationship
Another significant assumption is that the relationship 
between the two series is constant. In reality, this may be 
violated in multiple ways, but two of the most common are 
that the relationship may be structural or that the relationship 
may differ based upon the size of the price changes (figure 2d 
is a theoretical example of this).

In the power and gas markets, a common structural impact is 
seasonal correlation. Seasonal correlations may arise between 
two connected regions, especially when the connection 
becomes constrained. In this situation, when the transportation 
is unconstrained, the price differential should be limited by the 
transportation costs and price changes in each region should 
be highly correlated. However, at times when transportation 
becomes constrained, the prices in each region can move inde-
pendently and the correlation declines. When transportation 
capacity becomes systematically constrained at certain times of 
year then this will lead to seasonal correlations.

In the oil markets, we can see structural correlation patterns 
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F2. Series with 80% correlation
All data sets have the same mean and standard deviation 

2. Viva Lost Vegas, Energy Risk, August 2004
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Helpful hints

• Correlation should only be calculated on price returns.
• Correlation calculation is very sensitive to bad data points. The 
underlying data should always be carefully checked for outliers.
• A first approximation if correlation is significantly different from 
zero is to compare it with 2/√n. For example, a correlation calcu-
lated from 100 observations would have to be greater than 20% 
for us to say it was statistically different from zero.
• The potential VAR understatement on a spread position is 
roughly 2/√n, where n is the number of observations used to 
calculate the correlation.

3. A Pearson’s correlation coefficient is non-normally distributed. To calculate confidence intervals we 
calculate Fisher’s z. z = 0.5ln((1 + r)/(1 – r)). z is distributed normally with variance 1/(N – 3). 
r is the correlation estimate and N is the number of observations used to calculate correlation

Assumptions Implications

The relationship 
between the two 
series is linear, that is, 
DY = a + bDX

If the relationship is more complicated 
then a simple line, correlation will not 
pick that up

Estimate correlation 
from historical data set

Historical observations are all drawn 
from the same distribution and are 
indicative of the future distribution. 
There exists no structural difference 
between time periods (seasonal 
correlation) or by size of the return.

Note: we have focused on assumptions specific to correlation 
calculations. Remember that all assumptions related to volatility 
calculation also apply.

based upon backwardation or contango. In a full contango 
market, there is arbitrage between contracts that are close to 
delivery and contracts that are further from delivery. Because 
of this cash and carry arbitrage, movements of all points of the 
forward curve will be highly correlated. In contrast, in a back-
wardated market (one in which the price of a contract close 
to delivery is higher than a contract for delivery further in the 
future) shortage of physical product constrains arbitrage. The 
result is that the front of the curve can move relatively inde-
pendently of the back of the curve and correlation declines.

Correlation may also depend on the size of the price changes 
we evaluate. Consider two related markets with relatively high 
transportation costs. The price of each market may vary up 
to a certain point, but once it crosses that threshold arbitrage 
constrains further movement. The result is a fairly common 
phenomenon: a low correlation for small changes and a high 
correlation for large price changes. For example, we calculate 
a 92% correlation between WTI crude and Brent crude across 
all observations. But if we segregate the data by large returns 
(> 1.5 standard deviations), the correlation rises to 98%.

Accuracy of correlation measure
We must also always remember that correlation is only an 
estimate of the true population correlation. However, because 
correlation is bounded, the distribution around the estimate is 
not normal. We can, however, use Fisher’s z to calculate the 
significance of correlation estimates.3 For example, if we use 
100 observations and calculate a correlation of 80%, the true 
correlation could be anywhere between 86% and 72%. 

How does this uncertainty affect our VAR measure? Let us 
return to our initial example of long $1 million of asset 1 and 
short $1 million of asset 2. Figure 3 shows the potential VAR 
understatement due to correlation uncertainty based on a 
correlation derived from 100 days of history and a correlation 
derived from 500 days of history. If we use 100 days of history, 

we see that we may be understating VAR by as much as 20%. If 
we use 500 days of history (assuming of course that correlation 
has not changed over that period) we may still be understating 
VAR by 5%. Given the sensitivity to correlation, we must do 
everything we can to avoid introducing any problems in our 
calculation. Even a few bad or stale data points can quickly bias 
a correlation calculation (see figure 2b), especially if the corre-
lation is close to one. Plotting data is an excellent way to iden-
tify outliers and stale prices. 

Conclusions
Risk managers need to know their portfolio’s exposure to 
correlation. With a diversified portfolio, we need to worry 
about strengthening of correlation, as all asset prices will have 
a greater tendency to move together, reducing the diversifi-
cation benefit. With a hedged portfolio we need to be more 
concerned about a weakening of correlation, where our 
hedges will become less effective.

While we like to believe we understand correlation, we 
frequently ignore the assumptions we impose on a simple 
correlation measure. However, given the importance of corre-
lation to portfolio risk measures, it is crucial that we revisit and 
question these assumptions. This process will increase our own 
understanding and, eventually, lead to better metrics. 

F3. Potential VAR understatement due to correlation 
uncertainty 
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