Correlation measures are often major drivers of value-at-risk.

and

review the assumptions associated with calculating correlation

Valid assumptions required:
calculating correlation

% Few market participants have a simple long or short position.
Instead, native long or short positions are hedged, sometimes
with perfectly matching instruments but more frequently with
related assets. The effectiveness of these hedges is driven by
the strength of correlation between two assets. Because of this,
value-at-risk and changes in VAR are fundamentally dependent
upon correlation and changes in correlation.

The statistical definition of correlation is the covariance
between two variables divided by the standard deviation of
each variable:

_ cov(XY)
~ o,0,

By definition, correlation must be between minus one and
one. Because of this standardisation, we tend to discuss the
relationship between two series in terms of correlation rather
than covariance. Of course, even this calculation requires
many assumptions.

To see the impact of correlation on VAR consider the
following portfolio — long $1 million of asset 1 and short $1
million of asset 2. Assume both assets have an annual volatility
of 40%. Figure 1 shows how the VAR of this position changes
as the correlation between asset 1 and asset 2 changes. The
first thing we can see from this figure is that if the correla-
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tion is less than 50%, the risk of the portfolio is greater than

the risk of one leg. In other words, we need at least a positive
50% correlation to use an asset as a hedge. If we want to cut

the risk in half, we need at least an 85% correlation between

the two assets.!

The figure also shows that the relationship between VAR
and correlation is not linear. In fact, at extremely high corre-
lations (greater than 95%) slight correlation changes can have
significant effects on VAR. At first glance, we might say there
is little difference between a correlation of 99% and 96%.
However, the portfolio with a 96% correlation has a VAR
twice as large as that based upon a 99% correlation. When we
consider that there is uncertainty in our estimates of correla-
tion, we can easily see how slight variations can have a signifi-
cant impact on VAR.

One issue is that frequently we calculate a correla-
tion measure and think we understand what it means. For
example, assume we are told that two assets have a correlation
of 80%. Mentally, we have an image of what we expect the
joint distribution of these two assets to look like. Examine the
four graphs in figure 2. Each of these data sets has a correla-
tion of 80%. In addition, each series has the same mean and
standard deviation. In reality, when we are told something has
a correlation of 80% we assume a relationship like figure 2¢
— in other words, we assume underlying normal distributions
of the data. However, that might not always be the case. We
must remember that correlation is simply a statistical measure
of joint dispersion between two distributions and can be
calculated on any distribution.

The problem as usual comes down to assumptions. As
correlation calculations are fundamentally related to volatility
calculation, correlation embeds those assumptions:

* A functional form (geometric Brownian motion, mean
reversion, etc) of the two underlying price processes.

* The historical data set is appropriate for predicting future
correlations.

1. It is worth noting that hedge effectiveness testing for hedge accounting treatment occasionally refers to
a ‘correlation” between an asset and its hedge of 0.8 and 1.2. This is not a statistical measure of corre-
lation. It is instead the predicted change in hedge value given a specific change in asset value. However,
the true statistical correlation is extremely important to ensure that the hedge will remain cffective
through time. In a regression analysis, correlation is equivalent to regression \R?. Without a high R?,
the hedge will not effectively mitigate risk and large portions of profit and loss will be deemed ineffective
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All data sets have the same mean and standard deviation

* The underlying distributions are normally distributed.
In addition, the standard correlation calculation includes two
other important assumptions:
* The relationship between the two series is linear.
* The relationship between the two series is constant.

A linear relationship

It is important to realise that a correlation calculation fits a
line to a data set. The closer the data is to that line, the higher
the calculated correlation. The problem is that the relationship
may be more complex than this assumption implies. In figure
2a, we see that the change in ¥ can be perfectly predicted
given the change in X. However, the change is not a simple
linear relationship. In this situation, it should be possible to
perfectly hedge an exposure to X with Y even though the
naive correlation calculation is 80%.

While figure 2a represents a hypothetical example, there are
more realistic scenarios. Consider the relationship between
changes in implied volatility and price. We would expect
that both significant increases and decreases in price would
lead to increases in implied volatility. In a previous analysis
examining the correlation between changes in implied vola-
tility and prices, we found that changes in implied volatilities
had a +22% correlation with positive changes in price and a

—28% correlation with negative changes in price.? In this case,

ignoring the more complex dynamics between volatility and
price would lead to a mis-estimation of the correlation and

potentially the risk of a portfolio containing options.

A constant relationship

Another significant assumption is that the relationship
between the two series is constant. In reality, this may be
violated in multiple ways, but two of the most common are
that the relationship may be structural or that the relationship
may differ based upon the size of the price changes (figure 2d
is a theoretical example of this).

In the power and gas markets, a common structural impact is
seasonal correlation. Seasonal correlations may arise between
two connected regions, especially when the connection
becomes constrained. In this situation, when the transportation
is unconstrained, the price differential should be limited by the
transportation costs and price changes in each region should
be highly correlated. However, at times when transportation
becomes constrained, the prices in each region can move inde-
pendently and the correlation declines. When transportation
capacity becomes systematically constrained at certain times of
year then this will lead to seasonal correlations.

In the oil markets, we can see structural correlation patterns
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F3. Potential VAR understatement due to correlation
uncertainty

based upon backwardation or contango. In a full contango
market, there is arbitrage between contracts that are close to
delivery and contracts that are further from delivery. Because
of this cash and carry arbitrage, movements of all points of the
forward curve will be highly correlated. In contrast, in a back-
wardated market (one in which the price of a contract close
to delivery is higher than a contract for delivery further in the
future) shortage of physical product constrains arbitrage. The
result is that the front of the curve can move relatively inde-
pendently of the back of the curve and correlation declines.
Correlation may also depend on the size of the price changes
we evaluate. Consider two related markets with relatively high
transportation costs. The price of each market may vary up
to a certain point, but once it crosses that threshold arbitrage
constrains further movement. The result is a fairly common
phenomenon: a low correlation for small changes and a high
correlation for large price changes. For example, we calculate
2 92% correlation between WTI crude and Brent crude across
all observations. But if we segregate the data by large returns
(> 1.5 standard deviations), the correlation rises to 98%.

Accuracy of correlation measure

We must also always remember that correlation is only an
estimate of the true population correlation. However, because
correlation is bounded, the distribution around the estimate is
not normal. We can, however, use Fisher’s z to calculate the
significance of correlation estimates.® For example, if we use
100 observations and calculate a correlation of 80%, the true
correlation could be anywhere between 86% and 72%.

How does this uncertainty affect our VAR measure? Let us
return to our initial example of long $1 million of asset 1 and
short $1 million of asset 2. Figure 3 shows the potential VAR
understatement due to correlation uncertainty based on a
correlation derived from 100 days of history and a correlation
derived from 500 days of history. If we use 100 days of history,

3. A Pearson’s correlation coefficient is non-normally distributed. To calculate confidence intervals we
caleulate Fisher’s z. z = 0.5In((1 +r)/(1—1)). z is distributed normally with variance 1/(N — 3).
ris the correlation estimate and N is the number of observations used to calculate correlation
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Helpful hints

¢ Correlation should only be calculated on price returns.

¢ Correlation calculation is very sensitive to bad data points. The
underlying data should always be carefully checked for outliers.

* A first approximation if correlation is significantly different from
zero is to compare it with 2/Vn. For example, a correlation calcu-
lated from 100 observations would have to be greater than 20%
for us to say it was statistically different from zero.

* The potential VAR understatement on a spread position is
roughly 2/\n, where n is the number of observations used to
calculate the correlation.

we see that we may be understating VAR by as much as 20%. If
we use 500 days of history (assuming of course that correlation
has not changed over that period) we may still be understating
VAR by 5%. Given the sensitivity to correlation, we must do
everything we can to avoid introducing any problems in our
calculation. Even a few bad or stale data points can quickly bias
a correlation calculation (see figure 2b), especially if the corre-
lation is close to one. Plotting data is an excellent way to iden-
tify outliers and stale prices.

Conclusions

Risk managers need to know their portfolio’s exposure to
correlation. With a diversified portfolio, we need to worry
about strengthening of correlation, as all asset prices will have
a greater tendency to move together, reducing the diversifi-
cation benefit. With a hedged portfolio we need to be more
concerned about a weakening of correlation, where our
hedges will become less effective.

While we like to believe we understand correlation, we
frequently ignore the assumptions we impose on a simple
correlation measure. However, given the importance of corre-
lation to portfolio risk measures, it is crucial that we revisit and
question these assumptions. This process will increase our own
understanding and, eventually, lead to better metrics.

Assumptions Implications

The relationshi
¢ refationship If the relationship is more complicated

then a simple line, correlation will not
pick that up

between the two
series is linear, that is,
AY=a+BAX

Historical observations are all drawn
from the same distribution and are
Estimate correlation indicative of the future distribution.
from historical data set | There exists no structural difference
between time periods (seasonal

correlation) or by size of the return.

Note: we have focused on assumptions specific to correlation
calculations. Remember that all assumptions related to volatility
calculation also apply.






