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H Dependence between prices is crucial in many aspects 
of financial risk management, such as multi-asset deriva-
tive pricing and portfolio hedging. This is especially so when 
modelling price behaviour in energy markets because these 
commodities have become increasingly intertwined in recent 
years. For instance, both natural gas and crude oil are used to 
generate electricity and heating. Natural gas is used also to 
extract oil from tar sands.

Alexander (2005) studied dependence between prices for 
futures on crude oil and natural gas. She concluded that it is 
strong and cannot be modelled correctly by a bivariate Normal 
distribution. More precisely, when prices for these commodi-
ties are fitted by time-series models, the distributions for the 
error terms are found to be asymmetric. Moreover, crude oil 
and natural gas log-returns exhibit non-linear dependence. 
What could we do to take these factors into account?

In this paper, we use copulas to study the relationship 
between prices for futures on crude oil and natural gas. We 
model the log-returns on each commodity individually as 
time series, and we account for the dependence between 
them by fitting various families of copulas to the error 
terms. To help us select the best copula, we perform a range 
of goodness-of-fit tests. Finally, we use Monte Carlo simula-
tions to derive a joint predictive distribution for the prices of 
crude oil and natural gas.

Copula models
Through a detailed description of the steps involved in 
building a copula model, our goal is to illustrate the gener-
ality and the flexibility of this approach. As we shall see, 
multivariate Normality is only one option in a wide range of 
copula-based models that can capture the critical features of 
financial data, such as asymmetry, non-linear dependence or 
heavy-tail behaviour.

Let X and Y be continuous random variables, with distribu-

tion functions F(x) = Pr(X ≤ x) and G(y) = Pr(Y ≤ y), respec-
tively. Following Sklar (1959), there exists a unique function 
C such that:

	 Pr( , ) ( ( ), ( ))X x Y y C F x G y≤ ≤ =  	
(1)

where C (u, v) = Pr(U ≤ u, V ≤ v) is the distribution of the pair 
(U,V) = (F(X),G(Y)) whose margins are uniform on [0, 1]. 
The function C is called a copula. As argued by Joe (1997) or 
Nelsen (1999) among others, C characterises the dependence 
in the pair (X,Y).

When the joint distribution of (X, Y) is unknown, we can 
model it by assuming specific parametric forms for F, G and C 
in (1). For example, we might take X and Y to be exponential 
with different means κ, λ > 0. This is achieved using:

	
F x e G y ex y( ) , ( )/ /= − = −− −1 1κ λ

	
(2)

for all x, y > 0. For simplicity, suppose also that we choose to 
model the dependence by the Farlie-Gumbel-Morgenstern or 
FGM copula:

	 C u v uv uv u v( , ) ( )( ).= + − −θ 1 1 	
(3)

Here θ in [–1, 1] is a parameter to be determined. Replacing 
u by F(x) and v by G(y) in equation (3), we have a copula 
model for (X, Y):

	

Pr ,

( ) (

X x Y y

F x G y F x G y F x G y

≤ ≤( )
= ( ) ( ) + ( ) ( ) −{ } −θ 1 1 ))

./ / / /

{ }
= −( ) −( ) +( )− − − −1 1 1e e e ex y x yκ λ κ λθ

	
Although the joint distribution seems complex at first sight, a 

closer look reveals that it is in fact a simple function of F and G.
A distinct advantage of copula modelling is that distribu-

tions F, G and C in (1) can be chosen independently of one 
another. Depending on the circumstances, we could decide 
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to replace (2) by a statement that F is log-Normal and G is 
a Pareto distribution, say. This could be done while keeping 
C in the FGM family of copulas. But for fixed F and G, we 
could choose also to select C from another class of copulas. 
Popular choices include the Archimedean, extreme-value, 
and meta-elliptical families of copulas described by Joe 
(1997), Nelsen (1999) and Fang et al (2002).

Copulas are a powerful modelling tool because they can fit 
a large range of dependence structures. Copula modelling 
techniques are widely recognised in statistics, biostatistics 
and actuarial science. In the past 10 years, copulas have 
also become increasingly popular in finance, where they 
have found applications in derivatives pricing, credit risk 
and portfolio management, and so on. Introductions to 
copula modelling in statistics, finance and quantitative risk 
management have been written by Genest & Favre (2007), 
Cherubini et al (2004) and McNeil et al (2005). Copulas can 
be used also to fit data with complex time-varying patterns; 
see Patton (in press) for applications in econometrics and 
finance. We shall see below that it is fairly simple to infer the 
best-fitting copula and derive more realistic predictions than 
under the assumption that the joint distribution of (X, Y) is 
Normal. Assuming bivariate Normality amounts to taking 
both F and G as Normal, and restricting C to a specific 
parametric class of copulas called the Normal copulas.

Oil and gas market dependence over time
Consider prices of crude oil and natural gas, 
based on one-month-ahead futures contracts 
traded on Nymex. This data is available from 
Bloomberg’s financial information services. 
The log-returns for both series are plotted in 
figure 1 from July 1, 2003 to July 19, 2006. 
The top chart shows the log-returns as a func-
tion of time for the front-month light sweet 
crude oil futures contract, which is widely 
reported as a proxy for the cost of imported 
crude oil. Displayed in the bottom chart are 
log-returns as a function of time for a futures 
contract on 10,000 million British thermal 
units (MMBtu) of natural gas to be delivered 
at Henry Hub, a pricing point on the natural 
gas pipeline located in Erath, Louisiana, USA.

A rolling gap occurs in each series on the 
day of the month when the contract expires. 
Part of the variation observed on these days 
is the daily movement, but part is simply due 
to the difference in value for each commodity 
between the two contracts. For the period 
considered, these rolling gaps were judged to 
be sufficiently small to be ignored.

It is clear from figure 1 that the log-returns 
on crude oil and natural gas vary over time, 
but whether they are also interdependent is 

more difficult to tell. Before we can settle this issue, we must 
account for autocorrelation and heteroscedasticity in the 
marginal series.

Models for the marginal series
We performed standard Box-Pierce and Ljung-Box tests on 
log-returns and their squared values to detect the presence 
of autocorrelation and heteroscedasticity in the series. For 
crude oil, we found that neither of these tests is significant 
at the 5% level (P > 0.05). Consequently, crude oil log-
returns O

1
,O

2
, … observed from July 2003 to July 2006 can 

be viewed as a random sample from some distribution F with 
mean μ = 1.220 ×10–3 and standard deviation σ = 1.912 × 10–2.

However, the tails of F are fatter than those of a Normal 
distribution. Standard goodness-of-fit tests confirm that the 
error term Xt = (Ot − μ)/σ is not Normal; its behaviour is 
more accurately represented by a Student distribution with  
ψ =13.745 degrees of freedom.

When we applied Box-Pierce and Ljung-Box tests 
to natural gas log-returns Nt , we observed strong 
autocorrelations at various lags between their squared values. 
We concluded that the null hypothesis of homoscedasticity 
should be rejected (P < 0.05 at lag 1, P < 0.001 at lag 10). 
Generalised autoregressive conditional heteroscedasticity 
(Garch) methodology is often used to model 
heteroscedasticity in financial series. Using the inference 
techniques described by Bollerslev (1986), we found that the 

F1. Futures: crude oil versus natural gas
Log-returns for one-month-ahead futures on crude oil (top) and  
natural gas (bottom)   Source: Bloomberg
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following Garch(1,6) model is an adequate representation of 
the variation in the natural gas log-return series:
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In this model, the error terms Y1, Y2,… form a random 

sample from some distribution G. Typically, the latter is 
assumed to be Normal but here, this hypothesis is unrealistic. 
A better choice is given by the skewed t-distribution intro-
duced by Azzalini & Capitanio (2003). Thus we assumed that 
Yt = ξ + V –1/2Z, where ξ is a location parameter, V is a chi-
square random variable with ν degrees of freedom and Z is a 
skew-Normal variate independent of V. The distribution of Z 
involves parameters Ω and α controlling dispersion and shape, 
respectively. In our case, we found

	

Y tt ~
. , . , . , .

skewed −
= − = = =ξ α ν0 622 0 986 1 014 6 737Ω(( ). 	

(4)

Accounting for dependence between the series
The models given above provide adequate descriptions of the 
daily movements in crude oil log-returns Ot , and natural gas 
log-returns Nt , taken individually. However, it may be that 
the prices for these commodities exhibit some dependence. 
Accounting for this dependence, if any, would lead to more 
realistic predictions for prices of both crude oil and natural 

gas. From a statistical viewpoint, we must address two ques-
tions: (i) Are the variables Xt and Yt independent? (ii) If not, 
what would be an appropriate joint distribution for the pair 
(Xt, Yt)? This is where copulas come in handy. If X = Xt and 
Y = Yt are independent, then their joint distribution can be 
expressed in the form (1) with:
a) F: the Student distribution with ψ=13.745 degrees of 
freedom;
b) G: the skewed t-distribution specified in (4);
c) C(u,v) = uv for all u,v in [0,1].

However if there is dependence between X and Y, then we 
need another copula C to ‘glue’ the marginal distributions F 
and G together. When F and G are specified as above, copulas 
are the single most convenient way of combining them.

We can address issues (i) and (ii) simultaneously using the 
empirical copula (Deheuvels, 1979). This is a consistent esti-
mation Cn of the true underlying copula C. Several variants of 
Deheuvels’ definition exist; the most common version assigns 
a weight of 1/n to each pair (ut, vt), where
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Figure 2 shows a graph of the pairs (ut,vt) for the n=756 
observations at hand. It is clear from it that there is posi-
tive dependence between ut and vt. This means that whatever 
their marginal distributions, Xt and Yt have a tendency to vary 
together. In other words, the margins F and G identified earlier 
are not connected by the independence copula C(u, v) = uv.

To confirm this judgement, we can compute the correlation 
between the values of ut and vt. This measure of dependence is 
called Spearman’s rho rather than Pearson’s correlation, simply 
to emphasise that it is computed from the ranks of the data, 
not from the data itself. Here we find ρn=0.508, which is 
significantly different from zero (P < 0.001). This conclusion 
is based on the statistic (n−1)1/2ρn, which is standard Normal 
for large n under the null hypothesis of independence.

Kendall’s tau is another rank-based measure of dependence 
often used in this context. To compute τn, a line is drawn to 
connect the pairs (u1, v1) and (u2, v2). If the slope is positive, 
we count 1; if the slope is negative, we count –1 instead. We 
repeat the process for all other choices of distinct pairs (us, 
vs) and (ut, vt). There are m = n (n – 1)/2 such choices and τn is 
simply the sum of all 1s and –1s, divided by m. (Adjustments 
are necessary if the slope is 0 or infinite, but this shouldn’t 
occur if the data are continuous and measured with precision.)

Spearman’s rho and Kendall’s tau emphasise different aspects 
of the dependence. Both are valid, although in practice, it is 
often the case that τn < ρn (Capéraà & Genest, 1993). Here τn 
= 0.349 is smaller than ρn= 0.508 but significantly different 
from zero nonetheless (P<0.001). The test is based on the 
statistic {(9/2) n(n − 1)/(2n + 5)}1/2τn, which is standard Normal 
for large n under the null hypothesis of independence.
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Selection of the copula: estimation
Having concluded that the pairs (Xt , Yt) are associated, we 
must find a suitable copula C to describe this dependence. 
This copula should be such that if n pairs (U1,V1),…,(Un,Vn) 
were drawn from it repeatedly, then on average the resulting 
graph should look like figure 2. A close match should also be 
observed between empirical measures of dependence ρn, τn 
and the parameters they estimate, as per the following:

	

ρ

τ

C C u v v u

C C u v c u v

( ) = − + ( )
( ) = − + ( ) (

∫∫3 12

1 4

, ,

, ,

d d

))∫∫ d dv u,
	

(5)

where c(u,v)= ∂2C(u,v)/∂u∂v is the density of C (assuming 
it exists). Spearman’s rho and Kendall’s tau range from −1 
to 1 and their population values vanish in case of independ-
ence; see Chapter 5 of Nelsen (1999) for derivations of the 
above formulas and additional details. Note that the range for 
ρ(C) and τ(C) can be restricted when C belongs to certain 
parametric classes. For example, ρ(Cθ)=θ/3 spans [−1/3,1/3] 
and τ(Cθ)=2θ/9 is limited to [−2/9,2/9] for the FGM copula. 
This model is clearly inadequate here because we cannot 
get ρ(Cθ)=0.508 or τ(Cθ)=0.349 for any value of θ in [−1,1]. 
Besides, taking |θ| > 1 in (3) yields an invalid distribution. 

To assist us in the choice of C, we considered six fami-
lies of copulas commonly used in finance. They are listed 
in table 1, along with their parameter range. The first three 
are Archimedean ( Joe, 1997; Nelsen, 1999) and the last two 
are meta-elliptical (Fang et al, 2002). Plackett’s copula is in a 
class of its own. 

We can see from table 1 that the Student copula actually 
involves two parameters: θ and γ. In this model, the param-
eter θ governs dependence, while the degrees of freedom, γ, 
modify the shape of the copula for a given level of dependence 
θ. In our study, we allowed γ to vary between 2 and 30.

For each model in table 1, we estimated θ by inversion 
of Kendall’s τ. Specifically, the theoretical value τ(θ) was 
computed using (5) for each possible copula, and the equation 
τ(θ)=τn was solved to obtain θn. Table 2 lists expressions for θ as 
a function of τ for four of the six families, along with the esti-
mates obtained by solving the equation τ(θ)=τn. For example, 
τ(Cθ)=θ/(θ+2) for Clayton’s copula and hence θ=2τ/(1−τ); from 
τ=τn=0.349 we get θ=θn=1.07572. For the Frank and Plackett 
copulas, τ cannot be computed analytically; therefore, numer-
ical interpolation was used.

Under weak regularity conditions on the copula 
family, the inversion of Kendall’s tau is known to yield a 
consistent estimator of the dependence parameter (Genest 
& Rémillard, 2008). Inversion of Spearman’s rho would 
provide a different estimator that is just as good but as it 
turns out, Kendall’s tau is easier to compute analytically than 
Spearman’s rho for most copula families currently used in 
practice. For this reason, inversion of Kendall’s tau is often 
favoured and we follow this trend.

Selection of the copula: goodness-of-fit testing
When θ=θn as per table 2, each of the copulas Cθ listed in 
table 1 meets the minimal requirement τ(Cθn)=τn= 0.349. 
However, this is not sufficient to guarantee that Cθ is a good 
model for the data. For example, it could be that ρ(Cθn) is very 
different from ρn= 0.508 or that other important data charac-
teristics have been missed.

To help us select the most appropriate copula from table 1, we 
must rely on testing. A review and comparison of goodness-
of-fit procedures is given by Genest et al (2008). These authors 
favour ‘blanket’ tests, that is, rank-based procedures requiring 
no strategic choice such as kernel, bandwidth, etc. From their 
simulations, a good combination of power and conceptual 
simplicity is provided by the Cramér-von Mises statistic:

	
S n C u v C u vn n t t n t t

t

n
= ( ) − ( ){ }

=
∑ θ , , .

2

1 	
This statistic measures how close the fitted copula Cθn is from 
the empirical copula Cn whose support appears in figure 2 for 
the data at hand. Because the definition of Sn involves θn, the 
distribution of this statistic depends on the unknown value of 
θ under the null hypothesis that C is from the class Cθ. Thus 
the P-value of the test must be computed using a parametric 
bootstrap procedure described by Genest et al (2008).

T1. Six families of copulas

Family C(u,v) Range of θ
Clayton max[0,1–{(1–u)θ+(1–v)θ}1/θ] [–1,∞)–{0}

Frank θ–1ln{1+(eθu–1)(eθv–1)/(eθ–1)} (–∞,∞)–{0}

Gumbel exp{–(|lnu|θ+|lnv|θ)1/θ} [1,∞)

Plackett
[1+(θ–1)(u+v)–

[{1+(θ–1)(u+v)}2–4uvθ(θ–1)]1/2]/{2(θ–1)}
(0,∞)–{1}

Normal Nθ(Φ
–1(u),Φ–1(v)) [–1,1]

Student Tθ,γ(Tγ
–1(u),Tγ

–1(v)) [–1,1]

Φ: cumulative distribution function (cdf) of a N(0,1)
Nθ : cdf of a standard bivariate Normal distribution with Pearson correlation θ
Tγ : cdf of a Student with γ degrees of freedom
Tθ, γ : cdf of the bivariate Student distribution with γ degrees of freedom 
        (Fang et al, 2002)

T2. Estimates of the dependence parameter θ  
for different copulas

Family Formula θn

Clayton θ = 2τ/(1–τ) for τ > 0 1.076

Frank Obtained numerically 3.474

Gumbel θ = 1/(1–τ) for τ > 0 1.538

Plackett Obtained numerically 5.107

Normal θ = sin(πτ/2) 0.522

Student θ = sin(πτ/2) 0.522



66  energy risk � energyrisk.com

Cutting edge: Modelling price dependence 

In order to distinguish between the copula models listed 
in table 1, we applied the parametric bootstrap procedure 
of Genest et al (2008) to both the crude oil and natural gas 
data. For each model considered, we generated bootstrap 
values S*1,…,S*2000 of the Cramér-von Mises test statistic 
and we determined the proportion of these values that are 
larger than Sn.

Table 3 lists the (one-sided) P-values that we obtained. 
In particular, we found P≈ 0.03 for the Student copula 
with θ = 0.522 and γ = 22 degrees of freedom. All other 
models were rejected at this level, including the Student 
copulas with γ ≠ 22 degrees of freedom (not displayed 
in table 3). With a P-value of 1.4%, the Normal copula 
would be a viable alternative but this is still a far cry from 
the assumption that the distribution of the pair (Xt,Yt) is 
bivariate Normal. For, this assumption amounts to claiming 
that C is the Normal copula and that both F and G are also 
Normal. However, Normal margins are inappropriate in the 
present context. 

In summary, an adequate description of the dependence in 
the pairs (Xt,Yt) portrayed in figure 2 is given by

	
C u v T T u T v, , .. ,( ) = ( ) ( )( )− −

0 522 22 22
1

22
1

	
(6)

This finding is consistent with recent studies showing 
that the Student copula often provides a much better fit of 
multivariate financial return data than the Normal copula; 
for example, see Breymann et al (2003). As mentioned 
by Demarta & McNeil (2005), a distinct advantage of 
Student copulas over Normal copulas is their ability to 
capture heavy-tail behaviour – that is, the phenomenon 
of dependent extreme values so often observed in finan-
cial returns. Another important feature of the final model is 
the non-linear dependence of Yt on Xt. If we had taken for 
granted the traditional assumption that the joint distribu-
tion of (Xt,Yt) is Normal, we would not only have gotten 
the marginal distributions wrong: we would have forced 
E(Yt|Xt=x) to be linear in x, which it isn’t.

Forecasting
Forecasting with a copula model is simple. The basic steps 
are summarised in figure 3 for the specific model at hand. At 
time t, we generate a pair (ut,vt) from the Student copula C 
defined in (6). Then we set Xt=F–1(ut) and Yt=G–1(vt), where 
F is the Student distribution with ψ=13.745 degrees of 
freedom, and G is the skewed t-distribution given in (4). 

Finally, we compute Ot= σXt+μ and we obtain Nt via the 
Garch model described earlier. By using this procedure, 
we can construct price series for both crude oil and 
natural gas one day at a time in successive steps. To assess 
the uncertainty associated with this prediction, we must 
repeat the process a large number of times. This leads to an 
empirical predictive distribution.

T3. P-values for the goodness-of-fit of different  
copula models

Assumed copula P-value Assumed copula P-value

Clayton 0.0000 Plackett 0.0080

Frank 0.0095 Normal 0.0140

Gumbel 0.0075 Student, γ=22 0.0300

Student
copula

Student-
skew

distribution

Garch

Student
distribution

v

Residuals
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gas price

Crude oil 
price

Returns

Returns
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F3. A schematic description of the forecasting process
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Simulation results
We simulated 4,000,000 random paths 
using the above copula model for a one-
year time horizon using July 19, 2006 as the 
initial time step.

The bivariate density of prices is shown 
in figure 4. It is obvious from this graph 
that the joint distribution is asymmetric and 
heavy-tailed. The same observation holds 
for the predictive distribution of natural gas, 
conditional on any price of crude oil. For 
example, figure 5 shows the distribution of 
forecasts for the price of natural gas in July 
2007, assuming that the price of crude oil 
is around $70. The median of this distribu-
tion is $4.77, while the price of natural gas 
observed in that period was around $6.50. 

Extension
An implicit assumption of the preceding 
analysis is that the dependence between 
the prices of crude oil and natural gas is 
(roughly) constant with time. Otherwise, 
we couldn’t represent this dependence by 
a time-invariant copula C. To check this assumption, the 
value τ250(t) of Kendall’s tau between the log-returns for the 
two commodities was computed for successive periods of 250 
working days ending at t. The results are plotted in figure 6. 
The graph shows an upward trend in τ250(t) between April 
1990 and July 2006. Starting in April 2004, however, τ250(t) 
appears to have stabilised and is oscillating around 0.35. In 
other words, the dependence between Xt and Yt is roughly 
constant since July 2003. This is consistent with the hypoth-
esis that the dependence between pairs 
(Xt,Yt) of error terms can be represented by 
a single copula in this period. 

What if the dependence embodied in 
the copula C changed over time? To deal 
with this issue, we might assume that the 
joint distribution of the pair (Xt,Yt) is of 
the form (1) with C=Cθ with θ=θt a func-
tion of time t. To ensure that the depend-
ence structure is identifiable, we would 
need to assume a pattern for the variation 
– for example, θt = at+b. Van den Goor-
bergh et al (2005) illustrate this approach 
in option pricing based on the S&P 500 
and the Nasdaq indexes. While a dynamic-
copula approach could be adapted to the 
present context, much remains to be done 
to develop efficient estimation procedures 
and goodness-of-fit tests for cases where 
dependence varies over time. See Patton  
(in press) for further discussion. 
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