and show how forecasts

for crude oil and natural gas prices can be improved by modelling

‘ the dependence between them. Movements in individual returns are

described by time-series models, their dependence is captured by a

{ copula, and Monte Carlo simulations are used to forecast prices

Using copulas to model price
dependence in energy markets

* Dependence between prices is crucial in many aspects

of financial risk management, such as multi-asset deriva-

tive pricing and portfolio hedging. This is especially so when
modelling price behaviour in energy markets because these
commodities have become increasingly intertwined in recent
years. For instance, both natural gas and crude oil are used to
generate electricity and heating. Natural gas is used also to
extract oil from tar sands.

Alexander (2005) studied dependence between prices for
futures on crude oil and natural gas. She concluded that it is
strong and cannot be modelled correctly by a bivariate Normal
distribution. More precisely, when prices for these commodi-
ties are fitted by time-series models, the distributions for the
error terms are found to be asymmetric. Moreover, crude oil
and natural gas log-returns exhibit non-linear dependence.
What could we do to take these factors into account?

In this paper, we use copulas to study the relationship
between prices for futures on crude oil and natural gas. We
model the log-returns on each commodity individually as
time series, and we account for the dependence between
them by fitting various families of copulas to the error
terms. To help us select the best copula, we perform a range
of goodness-of-fit tests. Finally, we use Monte Carlo simula-
tions to derive a joint predictive distribution for the prices of

crude oil and natural gas.

Copula models

Through a detailed description of the steps involved in
building a copula model, our goal is to illustrate the gener-
ality and the flexibility of this approach. As we shall see,
multivariate Normality is only one option in a wide range of
copula-based models that can capture the critical features of
financial data, such as asymmetry, non-linear dependence or
heavy-tail behaviour.

Let X and Y be continuous random variables, with distribu-
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tion functions F(x) = Pr(X < x) and G(y) = Pr(Y <), respec-
tively. Following Sklar (1959), there exists a unique function
C such that:

PX<x,Y <y) = C(F(x), G(y)) M

where C(u, v) = Pr(U < u, V <v) is the distribution of the pair
(U, V) = (F(X),G(Y)) whose margins are uniform on [0, 1].
The function C is called a copula. As argued by Joe (1997) or
Nelsen (1999) among others, C characterises the dependence
in the pair (X, Y).

‘When the joint distribution of (X, Y) is unknown, we can
model it by assuming specific parametric forms for F, G and C
in (1). For example, we might take X and Y to be exponential
with different means K, A > 0. This is achieved using:

F(x)=1-¢ ¥, Giy)=1-¢"* Q)

for all x, y > 0. For simplicity, suppose also that we choose to
model the dependence by the Farlie-Gumbel-Morgenstern or
FGM copula:

Cuv)=uv+0uv(l—u)1-v). ©)

Here 0 in [-1, 1] is a parameter to be determined. Replacing
u by F(x) and v by G() in equation (3), we have a copula
model for (X, Y):

Pr(X <x,Y< y)
=F(x)G(y)+0F(x) G(y){I- F)H1-G(y)}
=(1—e_X/K)(l—e_y/}‘)(1+ee_x/‘<e_y/)‘).

Although the joint distribution seems complex at first sight, a
closer look reveals that it is in fact a simple function of F and G.

A distinct advantage of copula modelling is that distribu-
tions F, G and C in (1) can be chosen independently of one

another. Depending on the circumstances, we could decide



to replace (2) by a statement that F is log-Normal and G is
a Pareto distribution, say. This could be done while keeping
C in the FGM family of copulas. But for fixed F and G, we
could choose also to select C from another class of copulas.
Popular choices include the Archimedean, extreme-value,
and meta-elliptical families of copulas described by Joe
(1997), Nelsen (1999) and Fang et al (2002).

Copulas are a powerful modelling tool because they can fit
a large range of dependence structures. Copula modelling
techniques are widely recognised in statistics, biostatistics
and actuarial science. In the past 10 years, copulas have
also become increasingly popular in finance, where they
have found applications in derivatives pricing, credit risk
and portfolio management, and so on. Introductions to
copula modelling in statistics, finance and quantitative risk
management have been written by Genest & Favre (2007),
Cherubini ef al (2004) and McNeil et al (2005). Copulas can
be used also to fit data with complex time-varying patterns;
see Patton (in press) for applications in econometrics and
finance. We shall see below that it is fairly simple to infer the
best-fitting copula and derive more realistic predictions than
under the assumption that the joint distribution of (X, Y) is
Normal. Assuming bivariate Normality amounts to taking
both F and G as Normal, and restricting C to a specific
parametric class of copulas called the Normal copulas.

Oil and gas market dependence over time
Consider prices of crude oil and natural gas,

more difficult to tell. Before we can settle this issue, we must
account for autocorrelation and heteroscedasticity in the

marginal series.

Models for the marginal series
We performed standard Box-Pierce and Ljung-Box tests on
log-returns and their squared values to detect the presence
of autocorrelation and heteroscedasticity in the series. For
crude oil, we found that neither of these tests is significant
at the 5% level (P > 0.05). Consequently, crude oil log-
returns O,,0,, ... observed from July 2003 to July 2006 can
be viewed as a random sample from some distribution F with
mean p = 1.220x 107 and standard deviation 6= 1.912 x 1072,

However, the tails of F are fatter than those of a Normal
distribution. Standard goodness-of-fit tests confirm that the
error term X, = (O: — w)/0 is not Normal; its behaviour is
more accurately represented by a Student distribution with
Y =13.745 degrees of freedom.

When we applied Box-Pierce and Ljung-Box tests
to natural gas log-returns N,, we observed strong
autocorrelations at various lags between their squared values.
We concluded that the null hypothesis of homoscedasticity
should be rejected (P < 0.05 at lag 1, P < 0.001 at lag 10).
Generalised autoregressive conditional heteroscedasticity
(Garch) methodology is often used to model
heteroscedasticity in financial series. Using the inference
techniques described by Bollerslev (1986), we found that the

based on one-month-ahead futures contracts
traded on Nymex. This data is available from
Bloomberg’s financial information services. ”
The log-returns for both series are plotted in
figure 1 from July 1, 2003 to July 19, 2006.
The top chart shows the log-returns as a func-

Log-return
0.00

tion of time for the front-month light sweet
crude oil futures contract, which is widely

reported as a proxy for the cost of imported
crude oil. Displayed in the bottom chart are

o

“” JM M M W i N

W , W !u M

log-returns as a function of time for a futures

contract on 10,000 million British thermal

units (MMBtu) of natural gas to be delivered S

at Henry Hub, a pricing point on the natural 2

gas pipeline located in Erath, Louisiana, USA.
A rolling gap occurs in each series on the

0.50

Log-retum

day of the month when the contract expires.

Part of the variation observed on these days

is the daily movement, but part is simply due
to the difference in value for each commodity

0.10 -0.50 0.00

T T T
2004 2005 2006

between the two contracts. For the period
considered, these rolling gaps were judged to

T T T
2004 2005 2006

be sufficiently small to be ignored.
It is clear from figure 1 that the log-returns

on crude oil and natural gas vary over time,

but whether they are also interdependent is

F1. Futures: crude oil versus natural gas
Log-returns for one-month-ahead futures on crude oil (top) and
natural gas (bottom) Source: Bloomberg
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following Garch(1,6) model is an adequate representation of

the variation in the natural gas log-return series:

N, = 1.281x107* +Y,n,"2,

h, = 2.138x107* +6.206 x 102 N7,
+3.663x10° N2, +5.862x10° N2,
+9.319x102 N2
+9.472x1072 N2 ¢ +0.535h, ;.

In this model, the error terms Y, Y,,... form a random
sample from some distribution G. Typically, the latter is

assumed to be Normal but here, this hypothesis is unrealistic.

A better choice is given by the skewed t-distribution intro-

duced by Azzalini & Capitanio (2003). Thus we assumed that

—1/2 . . . .
Y = £+ V "Z, where & is a location parameter, V is a chi-

square random variable with v degrees of freedom and Z is a
skew-Normal variate independent of V. The distribution of Z

involves parameters £ and o controlling dispersion and shape,

respectively. In our case, we found
Y, ~ skewed —¢
(£=-0.622,Q2=0.986, . =1.014,v = 6.737).

Accounting for dependence between the series
The models given above provide adequate descriptions of the
daily movements in crude oil log-returns O,, and natural gas

log-returns N, taken individually. However, it may be that
the prices for these commodities exhibit some dependence.
Accounting for this dependence, if any, would lead to more

realistic predictions for prices of both crude oil and natural
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F2. Dependence between crude and natural gas
Pairs of normalised ranks showing the dependence
between crude oil and natural gas
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gas. From a statistical viewpoint, we must address two ques-
tions: (i) Are the variables X and Y independent? (ii) If not,
what would be an appropriate joint distribution for the pair
(X, Y))? This is where copulas come in handy. If X = X, and
Y=Y are independent, then their joint distribution can be
expressed in the form (1) with:

a) F: the Student distribution with Yy=13.745 degrees of
freedom;

b) G: the skewed r-distribution specified in (4);

¢) C(u,v) = uv for all u,v in [0,1].

However if there is dependence between X and Y, then we
need another copula C to ‘glue’ the marginal distributions F
and G together. When F and G are specified as above, copulas
are the single most convenient way of combining them.

We can address issues (i) and (ii) simultaneously using the
empirical copula (Deheuvels, 1979). This is a consistent esti-
mation C of the true underlying copula C. Several variants of
Deheuvels’ definition exist; the most common version assigns
a weight of 1/n to each pair (u,, v,), where

1
u, =——X rank of X, among X, ..., X,,
n+1

v, :Lx rank of Y, among Y}, ..., Y,.
n+1

Figure 2 shows a graph of the pairs (u,,v ) for the n=756
observations at hand. It is clear from it that there is posi-
tive dependence between u and v,. This means that whatever
their marginal distributions, X, and ¥, have a tendency to vary
together. In other words, the margins F' and G identified earlier
are not connected by the independence copula C(u, v) = uv.

To confirm this judgement, we can compute the correlation
between the values of #, and v,. This measure of dependence is
called Spearman’s rho rather than Pearson’s correlation, simply
to emphasise that it is computed from the ranks of the data,
not from the data itself. Here we find p,=0.508, which is
significantly different from zero (P < 0.001). This conclusion
is based on the statistic (n—1)""?p,, which is standard Normal
for large n under the null hypothesis of independence.

Kendall’s tau is another rank-based measure of dependence
often used in this context. To compute T , a line is drawn to
connect the pairs (4,, v,) and (u,, v,). If the slope is positive,
we count 1; if the slope is negative, we count —1 instead. We
repeat the process for all other choices of distinct pairs (u,
v)and (u,, v,). There are m=n(n — 1)/2 such choices and T  is
simply the sum of all 1s and —1s, divided by m. (Adjustments
are necessary if the slope is 0 or infinite, but this shouldn’t
occur if the data are continuous and measured with precision.)

Spearman’s tho and Kendall’s tau emphasise different aspects
of the dependence. Both are valid, although in practice, it is
often the case that T < p (Capéraa & Genest, 1993). Here T,
=0.349 is smaller than p =0.508 but significantly different
from zero nonetheless (P<0.001). The test is based on the
statistic {(9/2) n(n — 1)/2n + 5)}'?t , which is standard Normal
for large n under the null hypothesis of independence.



Selection of the copula: estimation

Having concluded that the pairs (X, ¥)) are associated, we
must find a suitable copula C to describe this dependence.
This copula should be such that if n pairs (U],Vl),...,(Un,V")
were drawn from it repeatedly, then on average the resulting
graph should look like figure 2. A close match should also be
observed between empirical measures of dependence p,, T,
and the parameters they estimate, as per the following:

p(C)=-3+12[[C(u,v)dvdu,

‘C(C)=—l+4”C(u,v)c(u,v) dvdu, ©

where ¢(u,v)=02C(u,v)/0udv is the density of C (assuming
it exists). Spearman’s rho and Kendall’s tau range from -1
to 1 and their population values vanish in case of independ-
ence; see Chapter 5 of Nelsen (1999) for derivations of the
above formulas and additional details. Note that the range for
P(C) and T(C) can be restricted when C belongs to certain
parametric classes. For example, p(Cy)=6/3 spans [-1/3,1/3]
and 1(C)=260/9 is limited to [-2/9,2/9] for the FGM copula.
This model is clearly inadequate here because we cannot
get p(C,)=0.508 or 1(C,)=0.349 for any value of 8 in [-1,1].
Besides, taking 8] > 1 in (3) yields an invalid distribution.

To assist us in the choice of C, we considered six fami-
lies of copulas commonly used in finance. They are listed
in table 1, along with their parameter range. The first three
are Archimedean (Joe, 1997; Nelsen, 1999) and the last two
are meta-elliptical (Fang et al, 2002). Plackett’s copula is in a
class of its own.

We can see from table 1 that the Student copula actually
involves two parameters: 0 and . In this model, the param-
eter O governs dependence, while the degrees of freedom, 7,
modify the shape of the copula for a given level of dependence
0. In our study, we allowed 7y to vary between 2 and 30.

For each model in table 1, we estimated 0 by inversion
of Kendall’s T. Specifically, the theoretical value ©(6) was
computed using (5) for each possible copula, and the equation
T(0)="T, was solved to obtain 6 . Table 2 lists expressions for 6 as
a function of T for four of the six families, along with the esti-
mates obtained by solving the equation 1(8)=7 . For example,
T(C,)=0/(6+2) for Clayton’s copula and hence 6=21/(1-1); from
1=T,=0.349 we get =0 =1.07572. For the Frank and Plackett
copulas, T cannot be computed analytically; therefore, numer-
ical interpolation was used.

Under weak regularity conditions on the copula
family, the inversion of Kendall’s tau is known to yield a
consistent estimator of the dependence parameter (Genest
& Rémillard, 2008). Inversion of Spearman’s rho would
provide a different estimator that is just as good but as it
turns out, Kendall’s tau is easier to compute analytically than
Spearman’s rho for most copula families currently used in
practice. For this reason, inversion of Kendall’s tau is often

favoured and we follow this trend.

Selection of the copula: goodness-of-fit testing
When =6 as per table 2, each of the copulas C, listed in
table 1 meets the minimal requirementt(C, )=T =0.349.
However, this is not sufficient to guarantee that C; is a good
model for the data. For example, it could be that p(C, ) is very
different from p =0.508 or that other important data charac-
teristics have been missed.

To help us select the most appropriate copula from table 1, we
must rely on testing. A review and comparison of goodness-
of-fit procedures is given by Genest et al (2008). These authors
favour ‘blanket’ tests, that is, rank-based procedures requiring
no strategic choice such as kernel, bandwidth, etc. From their
simulations, a good combination of power and conceptual
simplicity is provided by the Cramér-von Mises statistic:

S, =3 Cou (3, )= C, (1)

=1

This statistic measures how close the fitted copula C, is from
the empirical copula C, whose support appears in figure 2 for
the data at hand. Because the definition ofSn involves Bn, the
distribution of this statistic depends on the unknown value of
0 under the null hypothesis that C is from the class C,. Thus
the P-value of the test must be computed using a parametric
bootstrap procedure described by Genest et al (2008).

T1. Six families of copulas

Family Cuy) Range of 0
Clayton max[0,1-{(1-u)’+(1-v)°}'"] [-1,00)—{0}
Frank 0" In{1+(e%—1)(e”-1)/(e"-1)} (—00,00)—{0}
Gumbel exp{—(IInul®+lInv|®)"0} [1,20)
Plackett [{1+(e_1)(u+[v;(_e4;3(eu(gv_)l ey | O
Normal Ny (@), D' (v)) [-1,1]
Student T, (T, )T, () -1.1]

@: cumulative distribution function (cdf) of a N(0,1)
N,: cdf of a standard bivariate Normal distribution with Pearson correlation 6
T, cdf of a Student with y degrees of freedom
Ty, cdf of the bivariate Student distribution with y degrees of freedom
(Fang et al, 2002)

T2. Estimates of the dependence parameter 0
for different copulas

Family Formula A
Clayton 0 =2t/(1-t) fort>0 1.076
Frank Obtained numerically 3474
Gumbel 0=1/(1-7)fort>0 1.538
Plackett Obtained numerically 5.107
Normal 0 = sin(tt/2) 0.522
Student 0 = sin(tt/2) 0.522
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In order to distinguish between the copula models listed
T3. P-values for the goodness-of-fit of different

in table 1, we applied the parametric bootstrap procedure
copula models

of Genest ef al (2008) to both the crude oil and natural gas

Assumed copula P-value Assumed copula P-value data. For each model considered, we generated bootstrap
Clayton 0.0000 Plackett 0.0080 values S*l""’S_*zooo of the Cram'ér—von Mises test statistic
and we determined the proportion of these values that are
Frank 0.0095 Normal 0.0140 larger than S .
Gumbel 0.0075 Student, y=22 0.0300 Table 3 lists the (one-sided) P-values that we obtained.

In particular, we found P=0.03 for the Student copula
with 6 =0.522 and y =22 degrees of freedom. All other

models were rejected at this level, including the Student

copulas with y # 22 degrees of freedom (not displayed
in table 3). With a P-value of 1.4%, the Normal copula
would be a viable alternative but this is still a far cry from

v N the assumption that the distribution of the pair (X,,Y) is
K u V\ bivariate Normal. For, this assumption amounts to claiming
that C is the Normal copula and that both F and G are also
Sgtigsct' Student Normal. However, Normal margins are inappropriate in the
distribution distribution present context.
I In summary, an adequate description of the dependence in
Residuals the pairs (X,Y)) portrayed in figure 2 is given by

v

Returns _ _
C(u,v)=Ty 53 (Tzz Hu), Ty (V)) €

Returns This finding is consistent with recent studies showing
¢ Y that the Student copula often provides a much better fit of
multivariate financial return data than the Normal copula;
Natural Crude ol for example, see Breymann et al (2003). As mentioned
gas price price by Demarta & McNeil (2005), a distinct advantage of

Student copulas over Normal copulas is their ability to

capture heavy-tail behaviour — that is, the phenomenon

F3. A schematic description of the forecasting process | of dependent extreme values so often observed in finan-
cial returns. Another important feature of the final model is

the non-linear dependence of ¥, on X . If we had taken for

granted the traditional assumption that the joint distribu-

30 tion of (X,,Y) is Normal, we would not only have gotten
12,000 the marginal distributions wrong: we would have forced
& 25 E(Y,|X=x) to be linear in x, which it isn’t.
g 10,000
3 20 Forecasting
& S o Forecasting with a copula model is simple. The basic steps
:_g 15 6,000 % are summarised in figure 3 for the specific model at hand. At
E 10 é time ¢, we generate a pair (4,,v,) from the Student copula C
g 4,000 defined in (6). Then we set X=F~'(#) and Y=G(v), where
'L:Cj 5 2,000 F is the Student distribution with Yy=13.745 degrees of
freedom, and G is the skewed #-distribution given in (4).
0 0 Finally, we compute O =GX +u and we obtain N, via the
0 0 100 150 200230 Garch model described earlier. By using this procedure,
Prices of crude oil futures (%) . . .
we can construct price series for both crude oil and
natural gas one day at a time in successive steps. To assess
F4. Looking ahead the uncertainty associated with this prediction, we must
Predictive distribution for the prices of crude oil and natural repeat the process a large number of times. This leads to an
gas futures in July 2007 empirical predictive distribution.
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Simulation results
We simulated 4,000,000 random paths
using the above copula model for a one-
year time horizon using July 19, 2006 as the
initial time step.

The bivariate density of prices is shown
in figure 4. It is obvious from this graph
that the joint distribution is asymmetric and
heavy-tailed. The same observation holds
for the predictive distribution of natural gas,
conditional on any price of crude oil. For
example, figure 5 shows the distribution of
forecasts for the price of natural gas in July
2007, assuming that the price of crude oil
is around $70. The median of this distribu-
tion is $4.77, while the price of natural gas
observed in that period was around $6.50.

Extension

An implicit assumption of the preceding
analysis is that the dependence between
the prices of crude oil and natural gas is
(roughly) constant with time. Otherwise,
we couldn’t represent this dependence by

a time-invariant copula C. To check this assumption, the
value T, () of Kendall’s tau between the log-returns for the

250

two commodities was computed for successive periods of 250
working days ending at . The results are plotted in figure 6.

0.18 4

0.16 4

0.14 4

O T T T T T T 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Prices of natural gas futures

F5. Price prediction for natural gas
Predictive distribution for the price of natural gas in July 2007, assuming a price
of $70+$5 for crude oil
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constant since July 2003. This is consistent with the hypoth- Mathématique de Montréal

esis that the dependence between pairs
(X,,Y) of error terms can be represented by
a single copula in this period.

What if the dependence embodied in
the copula C changed over time? To deal
with this issue, we might assume that the
joint distribution of the pair (X,,Y) is of
the form (1) with C=C, with 6=6, a func-
tion of time #. To ensure that the depend-
ence structure is identifiable, we would
need to assume a pattern for the variation
— for example, 0, = at+b. Van den Goor-
bergh et al (2005) illustrate this approach
in option pricing based on the S&P 500
and the Nasdaq indexes. While a dynamic-
copula approach could be adapted to the
present context, much remains to be done
to develop efficient estimation procedures
and goodness-of-fit tests for cases where
dependence varies over time. See Patton

(in press) for further discussion.

March 2008
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