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A fter a turbulent decade, the past couple of years have arguably been a little 
easier for the derivatives valuation community. Overnight indexed swap 
(OIS) discounting is market standard for cash collateralised instruments, 

while funding and capital valuation adjustments are no longer a matter of debate. 
Margin valuation adjustment could be on the horizon, but the Street is largely in 
‘wait‑and‑see’ mode.

However, benchmark reform is a potential fly in the ointment. For euro swaps 
collateralised with cash, the rate used for discounting future cashflows – Eonia – will 
be banned for use in new trades from 2020, as it will not comply with the European 
Union’s benchmarks regulation.

Lawyers point out the discount rate is not specified in contracts – it’s up to the 
parties themselves to choose what rate to use – meaning swap users should be 
free to use Eonia after 2020. But, as there will be no new Eonia‑referencing 
swaps traded, no curve can be constructed, making it impossible to continue to 
use for discounting.

A replacement rate has yet to be selected by the European Central Bank (ECB)‑
convened working group on euro risk‑free rates, but sources close to the group 
believe it’s highly likely to choose the euro short‑term rate (Ester).

The problem is, this rate is under consultation and will not be ready until 
October 2019, according to the ECB. With Eonia barred from the start of 2020, the 
market will only have three months to build a functioning Ester curve that can be 
used not only for discounting, but for OIS trading in general.

The euro working group has already warned that the issue will create potential 
valuation problems from 2020, and it remains to be seen how the market will deal 
with this. 

Another problem lies with the potential discontinuation of Libor. In July last year, 
the UK Financial Conduct Authority said it would give up its powers to compel 
panel banks to submit quotes to the range of Libor currencies from the end of 
2021, which means the rate’s survival will not be certain from that date.

Libor‑based curves are used to obtain estimates for the forward‑floating rates, to 
determine future cashflows. This means there is a risk that Libor forecast curves 
may no longer be produced in their current form.

If Libor is discontinued after 2021, fallback clauses currently being developed by 
the industry should kick in, at which point existing contracts linked to the 
benchmark will reference the alternative risk‑free rate, such as Sonia for the 
sterling market. A fixed spread will then be added to the rate to take into account 
bank credit risk. 

The methodology for calculating the spread is still being developed but, 
when it is, a recent report by Numerix suggests using the fallback methodology 
to construct an alternative reference rate curve to help get a better view 
of future cashflows under the new rate. When that curve should kick in is 
currently anyone’s guess, given some banks are still willing to keep Libor alive 
beyond 2021.

So, while benchmark reform is starting to impact parts of the derivatives 
business, it’s unlikely valuations teams will be spared much longer.
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When facing the challenges of XVA computations 
with older-generation systems and limited in-house 
computational resources, banks have had to rethink 
their setups or cut corners completely. In particular, 
many were compelled to strip their overnight 
batches down to the bone and discard valuable 
intermediary results.

Big data technologies allow  
quants to think differently 
Intermediate results are a means for quants and 
traders to analyse results and track down errors 
efficiently. They also avoid much of the recalculation 
when something minor is amended – a single 
trade or credit support annex term, for example. 
In a large netting set, this could mean less than 
1% of the compute time. For this reason, the ICA 
system will save all future mark-to-markets of 
individual transactions and the sensitivities of all 
netting sets – on each path and on each date of 
the simulations. For large portfolios this means 
saving, slicing and dicing hundreds of billions of 
data points. 

With big data technologies, this can now be 
achieved at a very marginal cost – both in terms 
of computational time and financial outlay. With 
a fast investigation tool and highly efficient runs, 
a world of new possibilities opens up: traders 
and salespeople can work on real-time pre-trade 
prices and focus on efficiently optimising XVAs and 
resources by, for example, selecting who to trade 
with to minimise margin valuation adjustment 
or simulating thousands of portfolio scenarios to 
optimise capital allocation. 

Moving to the cloud – 
A game changer for agile teams 
Banks using in-house computational power have 
finite resources. In their overnight batches, they will 
need to be frugal with computationally intensive 
calculations such as cross gammas, while most 
resources will remain underused intraday. Working 
with the cloud offers multiple benefits: elasticity, 
scalability, on-demand accessibility, redundancy 
and pay-per-use – one uses and pays for what 
one needs when it is needed. Two conditions are 
required for this.

First, to share two types of knowledge among 
a single team: models on the one hand, cloud and 
large-scale distribution technology on the other. 
This will allow quants to replace traditional grids, 
work much closer to models, optimise distribution 
(to avoid redundant calculations), minimise input/
output and develop parallel orchestration with linear 
performance. Computation time can be reduced to 
the bare minimum; for example, using 10 times as 
many cores and reducing computation time tenfold 

will cost virtually the same amount.
Second, to meet regulators’ requirements and 

ensure the security of data.
Guidelines from the US Federal Reserve, the 

UK Financial Conduct Authority and the European 
Central Bank are logical and clear on how to 
satisfactorily use public cloud-based technology. 

As detailed in the February edition of Risk, 

ICA added an additional layer of security in 
ensuring no sensitive information is sent to a 
public cloud1 – where the bulk of computations 
are performed, aggregations and final metrics 
computations being undertaken locally using ICA’s 
big data database). ■

XVA as a service
For users looking for a comprehensive and agile XVA 
solution, the ICA tool is available ‘as a service’: turn-
key real-time XVA trading and risk solutions, including 
all value-added metrics, risk sensitivities, profit and 
loss attribution, ad hoc cross gamma, stress tests or 
other market scenarios, and real-time what-if sce-
narios (pre-trade pricing, assignments, terminations, 
change of credit support annex terms, central coun-
terparty upload, and so on).

New technologies at the service of XVA
For banks wishing to continue using proprietary mod-
els while moving architecture to a new generation, 
ICA can inject some or all of those technologies into 
the bank’s architecture through special implementa-
tion projects. ICA has distinctive experience of getting 
big data and cloud technologies to operate efficiently 
in a complex pricing and risk environment – and a 
successful track record. 

BIg dAtA ANd ClOud teChNOlOgy SOlutIONS

Contact
Stéphane Rio
Founder and CEO

Emmanuel Danzin
Head of Business Development

e info@the-ica.com
W www.the-ica.com

1  Sherif N, When a cloud can light the way, Risk, February 2018,  
www.risk.net/5395461
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Big data and cloud technologies are two examples of very mature innovations that banks do not sufficiently 
leverage – and not only for XVA. ICA combines the skills of quants, new technology experts and experienced 
former front officers, and is therefore uniquely positioned to offer banks the full benefit of these technologies 
with two appropriate solutions: 
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One afternoon in early April, the 
treasurer of a large corporate was in 
a meeting with its hedge adviser. The 
corporate needed to borrow euros 

through a cross-currency swap and had asked a 
handful of banks for quotes. 

One European bank eventually won the trade at 
a very narrow spread. Shortly after, the corporate 
was contacted by the bank with a new sales 
pitch, asking if they would be interested in buying 
corporate credit cards. The treasurer thought it was 
a bizarre request. But given that dealer competition 
for corporate trades has seen spreads on swaps 
halve in the past year alone, banks need to make 
their money back somehow. 

“We have definitely seen some people bidding 
pretty suicidal levels,” says one derivatives structurer 
at a US bank.

In many cases, the spreads have fallen well below 
banks’ return-on-equity hurdle rates. 

“I have seen banks where the logical pricing for 
them to get an adequate coverage of their capital 
would be at one level, and they will drop 10 basis 
points from that just to win the trade. This means, in 
some cases, they are pretty much making close to no 
return,” says a treasurer of one European corporate.

The recent changes have reversed a trend that 
has seen the costs of corporate trades increase in 
recent years, driven by banks’ efforts to cover rising 
counterparty credit, funding and capital cost hurdles. 

So why are corporates suddenly the flavour of the 
month? Some see them as one of the few remaining 
client types where decent profits were available. 
Others say the trades give them unique axes that 
other dealers won’t have.

There are more technical reasons too. Some say 
the prospect of rising rates in the US and Europe 
will deliver expected funding benefits from trades 
with these clients, increasing competition from 
all – including those banks that have wound down 
their non-core units and are looking to rebuild their 
uncollateralised corporate exposures.

European banks claim they’ve seen a particular 
push from their US rivals – Goldman Sachs has been 
vocal about its ambitions – which are using their 
large balance sheet and a funding cost advantage 
to drive down prices and win market share. “In the 
last couple of years, US banks have been able to 
increase market share not only in the US, but also in 
Europe and globally,” says one senior fixed-income 
trader at a European bank. “And while they would 
say they just want to do more business with clients, 
it may be more to do with leveraging the dollar 
capacity and the dollar surplus they had.”

Others say the increasing practice of using hedge 
advisers, and either increasing the number of banks 
invited to quote on a new swap, or splitting up the 
market and credit risk across dozens of banks, is 
pushing spreads down – to the extent that some 
banks simply can no longer be competitive.

Corporate benefits

•	  The corporate swaps market has seen a 
significant increase in competition in the past 
year, resulting in spreads recently tightening 
to levels some dealers say are unsustainable.

•	  Add-ons to swap prices to reflect credit risk, 
funding and return on capital have almost 
halved over the past year.

•	  The return on capital that banks price into 
swaps has also shrunk from double digits to 
single digits on certain trades.

•	  A number of market participants have been 
able to execute swaps close to mid, which 
some say aligns with pre-crisis levels.

•	  Some banks say corporates have been one 
of the few remaining areas where profits 
can be made, and where interesting axes 
can be obtained, leading to a stampede.

•	  Expected rate hikes could also give a positive 
funding profile to the trades.

•	  European banks say they have seen a 
particular push from US banks, who have a 
balance sheet and funding advantage versus 
European banks at present. 

•	  Changing market practice has also played a 
role in the spread tightening – for instance, 
widespread use of hedge advisers and swap 
auctions, which increase competition.

Need to know

the attractions of corporate trades have seen dealers flock to the market, but is the ensuing race to the bottom in swap prices 
sustainable? By Nazneen Sherif with editing by lukas Becker

Corporate swaps
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Market participants talk of recently executed 
trades where bids were close to the mid-price 
and still lost, which some say is reminiscent of 
pre-crisis levels. 

Tighter spreads, lower returns
Trades with corporates are typically uncollateralised, 
which caused spreads to widen significantly 
post-crisis as banks started to factor in additional 
counterparty credit risk, funding and capital 
costs associated with these trades into swap 
prices – in the form of credit valuation adjustment 
(CVA), funding valuation adjustment (FVA) and 
capital valuation adjustment (KVA), respectively. 
Collectively known as XVAs, these charges are 
typically passed onto corporate clients as part of 
the swap price. 

The CVA capital charge for future variation in 
CVA was introduced in Basel III – except in Europe, 
where European banks are exempt from the charge 
for trades with local corporates – while FVA and 
KVA were commonly priced from 2012 and 2015, 
respectively. As a result, corporates faced rising 
spreads on uncollateralised hedges.

But that all changed around a year ago, when 
XVA charges began to crater. 

“It’s trading certainly at levels half of where 
we could get to,” says the head of the corporates 
business at a second European bank. “We are 
seeing the more competitive pricing happening in 
the high-yield space, and that’s where we are seeing 
the most dramatic change.”

For instance, a five-year cross-currency swap with 
a high-yield name that used to clear at a spread of 
50–60bp of XVAs a year ago is now trading at close 
to 30bp, says the rates head. On a swap where a 
high-yield corporate receives fixed against floating, 
the spread shrank from 3–5bp to 1–2bp. 

Edouard Nguyen, former head of the dealing 
room at Paris-based corporate Veolia and now 
head of the corporates and treasuries practice at 
consulting firm Axis Alternatives, says the XVAs 
being charged to a corporate, mainly reflecting its 
counterparty credit risk and cost of funding to the 
bank, have shrunk by around 30% in a year.

“One year ago… XVAs for a 10-year interest rate 
swap fixed-rate receiver for a corporate like Veolia – 
rated BBB by S&P – ranged from 6.5–7bp running. 
More recent quotes show the prices have narrowed 
significantly. In the example of a BBB corporate, 
current quotes show XVAs around 4.5–5bp for the 
same swap,” he adds.

The head of the corporates business at the 
second European bank says dealers have also 
been willing to take a lower required rate of 
return on the capital allocated to the trade just to 
win market share.

“When this first started out, I think everybody 
was sort of on the 15–20% hurdle. I think it has 
now come lower. What we are seeing is people 
are pricing single-digit returns on some of the 
trades,” he adds.

As a result, some banks are having to turn 
to cross-selling other services such as cash 
management to corporates to make up the 
difference (see box: If you don’t cross, you make 
a loss).

“When you actively start cross selling it’s a sign 
that profits are getting very slim,” says François 
Jarrosson, a director in the hedging and derivatives 
team at Rothschild Global Advisory. 

Back in vogue
The reasons why corporates are now so desirable 
are many and varied. A key one is that they can 
be lucrative clients to have. Speaking around 
18 months ago, one senior rates structurer was 
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US banks have an “embedded competitive advantage”, says a senior fixed-income trader

Corporate swaps
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bemoaning the lack of profits his bank was making 
from flow trading. When asked how they keep the 
lights on, he said: “corporates”.

This wasn’t a secret – a markets head at a 
European bank also says that with spreads getting 
thinner on flow trading, corporates were one of the 
few remaining areas where profits were available. 
The markets head also notes that the flows give 
interesting axes that they can then pass onto other 
market participants that other dealers would not 
have. As a result, dealers have piled in. 

The US bank’s derivatives structurer notes that 
banks that had to close down their non-core 
businesses post-crisis are now trying to claw their 
way back into a space they had vacated, in order to 
rebuild relationships. 

“It feels like we are seeing more and more dealers 
coming back into this business with banks closing 
down their capital resolution or non-core divisions 
– that feels like a bit of an end of the austerity era,” 
says the structurer. “And where in the past it has 
been difficult for them to participate, with that kind of 
capital resolution work stream having been wound up 

and finished, they are able to be back in the business 
of loading up their balance sheet again.”  

Others say an expectation of rising rates in the 
US may have also prompted some banks to price 
cheaply on trades with corporates that pay fixed 
and receive floating. This means the uncollateralised 
corporate could be out of the money more in its 
early years, which would see the bank not receiving 
any margin, but having to pay it on its collateralised 
hedge, creating a funding requirement. 

But as rates rise, this flips around, creating a 
funding benefit. Plus, as the bank is effectively 
building a payable to the corporate during the later 
years of the trade, this means the credit risk from 
the corporate is lower. 

“Clearly in the US [we are] in a rising rate 
environment, so maybe people are saying ‘Oh, this 
is going to be in-the-money to the client and we are 
going to be money-good on it, so we will just go 
cheap,” says the head of the corporates business at 
the second European bank.

Funding advantages
US banks are also said to be using their balance 
sheet advantages to muscle in on corporate 
business, helped by a collateral funding advantage 
from their long US dollar bias.

These banks use US dollar-euro cross-currency 
swaps to fund collateral to post as margin. For 
example, bank A lends dollars to bank B and 
receives euros, and vice versa. Bank A needs to 
make coupon payments in euros at the euro interest 
rate to the second bank, and receives the opposite. 
A basis, which is added to the euro interest rate paid 
by bank A, factors in the difference in funding costs 
of the two currencies. 

On June 5, 2017, the euro cross-currency basis 
for a five-year trade against US dollar Libor was 
–35.25 and for sterling it was –9.25, according to 
data from Bloomberg. By April 12, 2018, the euro 
basis had fallen to –27.5, while sterling sat at –4.25 
(figure 1). 

This means US banks have been able to obtain 
euros and sterling at a rate better than the rate at 
which European banks can borrow dollars, making 
collateral payments cheaper to make compared to 
non-US banks.

“They have been enjoying the fact that on 
average they are long dollar and the dollar has been 
more complicated to find than any other currency in 
the past couple of years, which means they have an 
embedded competitive advantage compared to a lot 
of banks which are not long dollar,” says the senior 
fixed-income trader at the first European bank.

This funding advantage has helped US banks 
win over more UK clients in recent years, he says: 
“Because they have been long dollar through 
the cross-currency market they have been able to 
transform dollar into sterling and with sterling they 
have been able to generate [funding] at a level 
which was lower than non-US banks, thanks to the 
cross-currency basis and the fact that people were 
struggling to get the dollar.” 

European banks have structural advantages of 
their own, though. An analysis by Risk Quantum 
shows US dealers hold over seven times more 
capital against CVA exposures than European banks. 
This could be a result of European banks’ CVA 
exemption for trades with EU corporates, or a sign 
that US banks are winning significant market share 
(see box: US banks’ CVA lead). Either way, it should 
give European banks a pricing edge.

“We have definitely seen  
some people bidding pretty  
suicidal levels”  

Derivatives structurer at a US bank

Cross-selling is not a new strategy 
in the corporates derivatives 
market. In order to maintain a good 
relationship with a large corporate 
name, banks have long been 
known to offer cheaper prices on 
some services such as derivatives, 
for instance, and then make up 
for that through fees on capital 
markets services such as mergers 
and acquisitions, or bond issuances. 

Although dealers disagree 
that cross-selling has become more aggressive in 
recent years, market participants point to two key 
developments. 

One is that dealers have been pushing services 
such as wire transfers, cash centralisation and cross-
border cash repatriation – collectively known as cash-
pooling services – more than they did a few years ago.

“Before, it was a side business of derivatives and 
derivatives was really the product that was pushed. 
Over the past two years, I have noticed they were 
strongly interested in implementing cash pooling and 
managing cash pooling for large corporates,” says 
Edouard Nguyen, former head of the dealing room 
at Paris-based corporate Veolia and now head of the 
corporates and treasuries practice at consulting firm 
Axis Alternatives.

The advantage is its retail 
banking-type nature, says Nguyen, 
which makes the business profitable 
and less risky. “This is a fee-based 
business model which is not 
correlated to market risk. Contracts 
are signed for three to four years, 
which provides more visibility 
and stability in the medium term. 
Also, it’s less capital intensive than 
derivatives as banks are not lending 
their balance sheet,” he says. 

“And switching from one cash-pooling bank 
to another is a complicated and time-consuming 
process, as you need to change a lot of bank accounts, 
configure new standing settlement instructions, 
sometimes even change systems,” he adds.

The head of structuring at one global bank says 
that recently, larger clearing banks have been laying 
the groundwork to combine cash sales and corporate 
sales teams to boost cross-selling activity. 

“It used to be that cash management sales and 
derivatives sales were split. I hear that teams are 
being combined, so it’s possible that these banks 
are considering returns from specific clients on a 
combined basis and the deposit or cash management 
side plays a role in the required returns they need for 
the derivatives business,” he says.

IF yOu dON’t CROSS, yOu’ll mAke A lOSS

Edouard Nguyen, Veolia

Corporate swaps
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Greater competition
Evolving market practices have exacerbated the 
race to the bottom for swap prices. For instance, 
the number of dealers corporates ask for quotes 
has increased. In a 2010 Risk.net survey of 40 
corporates the average number of banks being 
asked to quote on a trade was two to three – none 
of the participants asked more than five dealers. 
Hedge advisers say it’s now common to put 10 
banks in competition for a swap.

The head of the corporates business at the second 
European bank says the increasing involvement of 
hedge advisers such as Philadelphia-based Chatham 
Financial has put a heavy squeeze on their margins.

“What Chatham does is go, ‘So, we went to 
five banks. The first two had the lowest price, we 
think we can drive the other three into that price. 
Why don’t we give the first two 50% of the trade 
and tell them they can compete with the third and 
fourth and fifth bank on the other 50% of the 
trade,” he says. “They set up this dynamic that gets 
even the best pricers having to lower their price. It’s 
ridiculous. I think people are caving versus holding 
to return limits and their return hurdles.”

Brian Conly, managing director at Chatham 
Financial, says it understands banks need to make a 
fair return on capital and risk: “However, we believe 
that the profitability on derivatives products should 
be transparent and match the size of returns seen 
on the underlying debt/risk, not be drastically higher, 
as is often the case.”

Dealers say corporates are also increasingly 
syndicating the market risk and credit risk elements 
of most of their financing transactions – including 
cross-currency swaps – separately using a larger 
number of banks. This enables banks to compete 
aggressively on the credit risk elements of the 
swap’s price.

“[In] some recent syndications, we have been 
told, 30 banks were called in the syndication 

process for credit. There are a large number of 
banks involved, including Japanese banks,” says 
a structurer at a large global bank. “It used to be 
only on illiquid or large financings… it has now 
become a much more widespread approach…
which means in our view it has decoupled the 
market risk component from the XVA component, 
potentially allowing more competition explicitly on 
the XVA terms.” 

Dealers have also become better at netting off 
their XVAs by viewing prices at portfolio level rather 
than at the trade level. For instance, two trades 
with the same corporate where funding costs can 
offset will make the second trade cheaper for the 
corporate. Interdealer hedges can also be chosen in 
a way that XVA costs offset at the netting set level. 

“The target is to be more aggressive. It’s a 
chicken-and-egg process… it’s not because people 
have significantly improved the models that banks 
can be more aggressive. It’s because banks tend to 
be more aggressive that people are thinking, ‘How 
can we think about the models differently?” says 
the senior trader at the first European bank. ■ 

Previously published on Risk.net

“It feels like we are seeing more 
and more dealers coming back into 
this business”  

Senior rates structurer

The median credit valuation adjustment (CVA) 
capital charge for US global systemically important 
banks (G-Sibs) was 7.7 times larger than for 
European banks at end-2017, reflecting different 
implementations of Basel capital rules between the 
two jurisdictions. 

The median capital charges for the US and 
European Union G-Sibs were $2.1 billion and $275 
million, respectively. Aggregate CVA charges for the 
eight US G-Sibs were $16.3 billion, compared to just 
$3.7 billion for the 12 EU G-Sibs at end-2017. 

Huge differences in the size of the charges can 
also be discerned between EU and US lenders within 
their respective G-Sib ‘buckets’, which group banks by 
systemic risk. 

Within bucket three, for instance, Bank of America 
Merrill Lynch and Citigroup reported charges of $2.7 
billion and $3.1 billion, respectively, whereas the two 
European banks in the group – Deutsche Bank and 
HSBC – reported charges of just $620 million and 
$760 million, respectively. 

Nor do the differences correspond to the size of the 
banks’ derivatives holdings. Among bucket two G-Sibs, 
for example, Barclays reported $13.4 trillion in over-
the-counter derivatives notionals and Goldman Sachs 
$22.5 trillion at end-2017, meaning the US dealer’s 
portfolio was 68% larger than the UK bank’s. 

However, the CVA charge for Goldman was a 
whopping 888% larger than for Barclays, at $3.2 
billion compared with $324 million. 

CVA accounts for the risk from mark-to-
market losses to non-cleared derivatives due to a 
deterioration of counterparty credit quality. Basel 
Committee on Banking Supervision standards 
require banks to hold regulatory capital against 
this risk. 

These standards were overhauled last year, but 
the changes are yet to be implemented nationally. 
Currently, two approaches can be used to generate the 
capital requirement. Under the advanced approach, 
banks are allowed to use a value-at-risk model to 
estimate losses to a 99% confidence level over a 10-
day time horizon. 

Two sets of results – one produced using the 
previous year’s data and another using data 
corresponding to a stressed period – are summed 
and multiplied to produce the final charge. The 
standardised approach calculates the charge taking 
into account the external credit rating of each 
counterparty as well as the effective maturity and 
exposure-at-default of each position. Under Basel’s 
new framework, only the standardised approach and 
a cruder variant will be available – internal models will 
be barred.

European law waives the CVA capital charge for 
EU banks’ trades with corporations, pension funds, 
and sovereign entities, whereas the US law does not. 
The European Banking Authority has made repeated 
attempts to remove the exemption, which was 
originally championed by members of the European 
Parliament. 

CVA charges for US banks should be higher than for 
their EU peers on account of their larger non-cleared 
derivatives portfolios, as Risk Quantum analysis 
relates. Non-cleared positions made up 53% of US 
G-Sibs’ derivatives portfolios at end-2017, compared 
to 40% at eurozone dealers and 46% at UK banks. 

However, the differences in charges are so massive 
that something else must be at play – namely, the 
effect of the EU’s CVA exemptions. US bank lobbyists 
have long bemoaned the set of waivers allowed their 
European peers, and blame them for creating an 
unlevel playing field in non-cleared derivatives. The 
data appears to justify their complaints.

European authorities have themselves calculated 
that removing the exemptions would triple EU bank 
CVA capital at a stroke. Such large discrepancies may 
strengthen the hands of standard-setters at the Basel 
level when it comes to getting the EU to scrap the 
exemptions following the introduction of the revised 
CVA framework.

uS BANkS’ CVA leAd

Corporate swaps
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European banks would see their credit valuation adjustment (CVA) risk 
capital charges more than triple if transactions currently exempted from 
the requirements were removed, a European Banking Authority (EBA) 
study shows.

The median EU bank would see its current CVA risk capital charge multiplied 
3.06 times if intragroup transactions and trades with corporates, pension funds, 
and other non-financial entities currently spared the requirements were included 
in the calculations.

The survey also revealed that for 60% of banks polled, their current CVA risk 
charge accounted for less than 1% of their total Pillar 1 capital requirements. 
Just 10% of dealers said that it accounted for 4% or more.

With exempted transactions reintegrated, however, 38% of banks would have 
CVA charges making up 4% or more of their total requirements.

The EBA also estimated the impact on common equity Tier 1 capital of 
exempted transactions coming into scope of CVA capitalisation. It found that 
this would have a more than 200 basis point impact on seven banks’ core ratios.

If half of the currently exempted CVA risk charges were thrust on banks today, 
the watchdog estimates the sector would be undercapitalised for this risk to the 
tune of €132 million. If 70% of the exempted charges materialised, the amount 
would be €192 million.

What is it?
The European Union’s Capital Requirements Regulation (CRR) allows EU banks 
to waive CVA capital charges for non-cleared trades conducted with certain 
types of counterparties – including corporations, pension funds, and sovereign 
entities. The exemptions were put in place to protect non-financial counterparties 
from a surge in hedging costs.

The EBA monitors the impact on bank regulatory capital of transactions 
exempted from the CVA risk charges. The latest results were produced from a 
survey of 169 EU banks, which were asked to calculate what their CVA capital 
charges would have been if CRR-exempted transactions had been reintegrated. 
Data was provided as of December 31, 2016.

Why it matters
Data-gathering exercises like the EBA’s can be used as ammunition in 
forthcoming policy debates within the EU on whether CVA exemptions should 
continue to apply under revised capital requirements regulations.

The EBA itself recommended scrapping the exemptions in 2014, and 
issued proposals in 2015 on how the Basel standards on CVA risk could 
be tweaked. Yet it backed down from this position in 2017, in part because 
the Basel Committee nixed internal modelling for CVA capital in March 
2016, leaving only the two standardised approaches on the table. Estimates 
suggest these approaches would impose CVA charges double those under 
the internal model approach.

Ultimate authority for either upholding or removing the exemptions rests with 
the European Commission, Parliament, and Council.

Partisans on both side of the debate can use the authority’s findings to bang 
the drum on CVA risk capital. The evidence suggests the impact of reintegrating 
exempted transactions would be slight on the banking sector as a whole, but 
that certain institutions could be crippled by drastically higher capital costs. 
Whether macro- or micro-prudential considerations dictate the outcome of this 
debate remains to be seen.  ■ 

Previously published on Risk.net

EU banks’ CVA capital to 
triple if exemptions axed

CVA risk capital as % of total Pillar 1 capital requirements

Source: EBA 2016 CVA risk monitoring exercise

Seven banks would incur 200bp-plus hit to capital if long-standing waiverswere repealed, says eBA. Writes louie Woodall

•	 EBA shelves CVA charge plans after twin defeats www.risk.net/4642101
•	 European banks tire of CVA guessing game www.risk.net/5129931
•	 View all bank stories www.risk.net/risk-quantum/banks

>> Further reading on www.risk.net
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W hile many professionals are chasing 
the latest derivatives valuation 
adjustments (XVAs) and trying to 
introduce new ones, we should 

make sure we deal with the fundamental ones first.
Many basic issues with credit valuation 

adjustment (CVA) – the first of the family – still 
remain unaddressed. We should be cautious in 
considering it dead due to the effects of margining 
for non-cleared swaps, especially given the blunt 
methodology adopted for the industry’s standard 
initial margin model (Simm), and we should also pay 
attention to potential double counting in XVAs due 
to non-linearities.

CVA answers the following question: “How much 
discount do I get on the price of this deal due to 
the fact that you, my counterparty, can default?” It 
has traditionally been calculated with a risk-neutral 
valuation approach (Brigo and Masetti, 2006), 
with all the pros and cons discussed in my previous 
column (Risk Magazine, February 2018).

But despite having been around for years, a 
question remains: can CVA really be hedged? 
Challenges range from finding good liquid 
instruments for default probabilities and recoveries, 
to modelling the dynamics and option prices of 
complex netting sets with option maturities given 
by the counterparty random default time. Wrong-
way risk is also quite model-dependent and hard to 
assess (Brigo and Pallavicini, 2008).

Then there is debit valuation adjustment (DVA), 
which is the CVA seen from the other counterparty’s 
perspective (Brigo and Capponi, 2008). DVA 
answers the question: “How much markup do 
I need to pay over the price of this deal to my 
counterparty due to the fact I can default?”

The mark-to-market value of DVA goes up when 
a company’s credit quality goes down. Companies 
could therefore profit from their debt deterioration – 
we have seen banks report $2.5 billion DVA gains in 
a quarter in the past.

Given that a party cannot sell protection on itself, 
DVA is notoriously difficult to hedge. It is typically 
hedged by proxy, which is not ideal when jump-to-
default risk is included in the picture. Furthermore, 
bilateral CVA and DVA introduce a first-to-default 
time that embeds a default correlation that is 
difficult to hedge. The Basel Committee on Banking 
Supervision hasn’t recognised DVA, whereas the 
accounting standards do.

Some ask will margin and clearing kill CVA and 
DVA? In a 2014 paper on bilateral counterparty risk 
valuation (Brigo, Capponi and Pallavicini, 2014), it is 
shown that even under continued collateralisation, 
contagion and gap risk at default may lead to a 
residual CVA that in some cases is as large as CVA 
as for the uncollateralised trade. In a 2014 paper 
on cleared and bilateral swap pricing (Brigo and 
Pallavicini, 2014), we also study liquidation delays 
coming from possible disputes.

The additional initial margin might limit the 
problem, but the blunt methodology adopted 
by the Simm implies it does not always address 
the real gap risk, which will be always quite 
model-dependent (Brigo and Pallavicini, 2014). 

FVA is the next in the XVA family. This accounts 
for all the borrowing costs and lending benefits 
one faces in servicing the trade accounts. It can be 
sizeable – JP Morgan, for example, declared an FVA 
of $1.5 billion in a single quarter in 2013.

FVA is linked to the CVA and DVA that come from 
the external borrowing and lending operation of 
the bank, so in a way it is also driven by credit risk. 
These three XVAs may introduce non-linear features 
in valuation when borrowing and lending rates are 
not equal, or when replacement closeout at default 
is used in case of early default.

The mathematical tools needed in this case range 
from semi-linear partial differential equations to 
backward stochastic differential equations. These tools 
are quite advanced and rarely used in the industry. 
They can also be used to assess the cost of trading 
via a clearing house or a standardised credit support 
annex with variation and initial margin (Brigo and 
Pallavicini, 2014). Approximating non-linearities by 
linearising can lead to double counting, and the issue 
needs to be investigated further.

The final valuation adjustment is capital valuation 
adjustment (KVA). Initially, a classic replication 
approach was proposed in 2014 (Green, Kenyon 
and Dennis, 2014). However, as I mentioned in the 
February column, there is a different approach: in a 
2017 paper (Brigo, Francischello, Pallavicini, 2017), 
we propose an indifference approach for KVA, finally 
moving beyond the continued and unrealistic stretch 
of risk-neutral valuation and replication.

However, while further research on KVA and 
XVA is needed, we should not forget the unsolved, 
fundamental challenges around CVA. ■ 

Previously published on Risk.net
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Fundamental questions on CVA remain unanswered, says mathematical finance head damiano Brigo

Brigo D and Masetti M, 2006

Risk Neutral Pricing of Counterparty Risk

Counterparty Credit Risk Modelling: Risk Management, 

Pricing and Regulation (edited by Michael Pykhtin)

Risk Books

Brigo D and Pallavicini A, 2008

Counterparty Risk and Contingent CDS under correlation

Risk February, 2008

Brigo D and Capponi A, 2008

Bilateral counterparty risk with stochastic  

dynamical models

arXiv.org

Brigo D, Capponi A and Pallavicini A, 2014

Arbitrage-free bilateral counterparty risk valuation under 

collateralization and application to Credit Default Swaps

Mathematical Finance, Vol 24, No 1, pages 125–146

Brigo D and Pallavicini A, 2014

Nonlinear consistent valuation of CCP cleared or 

CSA bilateral trades with initial margins under credit, 

funding and wrong-way risks

Journal of Financial Engineering, 1 (1):1–60

Green A, Kenyon C and Dennis CR, 2014

KVA: Capital Valuation Adjustment by Replication

Risk 27(12)

Brigo D, Francischello M and Pallavicini A, 2017

An indifference approach to the cost of capital 

constraints: KVA and beyond

arXiv.org

ReFeReNCeS

Damiano Brigo is head of the mathematical finance 
research group at Imperial College, London

Opinion: damiano Brigo



11 XVA Special Report 2018

Sponsored Q&A

Stéphane Rio, Founder 
and Chief Executive, ICA  
www.the-ica.com

What are the biggest concerns currently about how the industry 
manages XVA?
Stéphane Rio, ICA: Beyond the lack of standardisation and transparency, 
which are key issues for the industry, each bank has also its own challenges.
Typically, there are two areas that are often contradictory, but always 
intertwined, in which the current situation seems unsatisfactory for XVA desks: 
speed – or efficiency – and acute understanding.

A typical illustration of concerns with speed is traders having to assess – in as 
close to real time as possible, which more often ends up being done in minutes 
rather than in a couple of seconds – the impact of a transaction on XVA. Add 
in the resulting changes to hedges and the entire process often becomes a 
daunting task.

In terms of understanding, whether profit and loss (P&L) explanations or sales 
attributions, determining the source of a change is similarly difficult.

Often, to resolve the first problem, solutions have compromised the second, 
and vice versa.

How difficult is it to make centralised XVA decisions with siloed 
trading desks?
Stéphane Rio: XVA desks have the unique feature of being true cross-asset 
desks. In particular they are, by nature, forced to rely on data – trades, 
counterparty and market data – coming from all other desks in the bank. This 
raises questions around the heterogeneity and quality of this data, which will 
drive important decisions by the XVA desk. Appropriate processes and controls 
have to be put in place to mitigate this risk.

A second aspect is organisation. When it comes to pricing a client trade, 
there are several parties involved in building the final price, including the 
trading desk (risk-free price), the XVA desk (XVA margin) and the sales desk 
(sales margin). A robust XVA system must account for an efficient sales-pricing 
workflow, including for all actors’ interactions, and ensure a timely response to 
the client.

How significant a concern is needing to make hard and fast 
decisions on XVA in a changing regulatory landscape?
Stéphane Rio: Such a landscape often translates into new and potentially 
complex system requirements. However, in practice, system evolutions are very 
slow, because of system landscapes in banks that are still quite monolithic. In 
the case of traditional system vendors, upgrading to attain new functionalities is 
often a large project that can take months, if not years. 

For banks undertaking internal development, there is a need to separate tasks 
into independent modules to gain agility and adapt more quickly to the required 
evolution. For banks using vendors, it is time to think of adopting Software as a 
Service (SaaS) – adjusting to regulatory changes will only be a matter of testing 
the new results or connecting the results to the internal workflow, and can be 
achieved in just a few weeks at minimal cost.

What are the current limitations for the industry when 
calculating XVA?
Stéphane Rio: Big compute and big data. Banks inevitably bump into large 
parallel compute issues and the capacity to manipulate a very large amount of data.

Often these hurdles are resolved through approximations – thereby avoiding 
a full revaluation – and through discarding intermediate results, which creates 
additional problems: 
•  Model validation challenges – in particular when models from the risk 

department differ from the front-office models.
•  The inability to save intermediate results complicates the analysis of results 

and requires full recomputing for each incremental pricing.

Furthermore, access to sufficient compute power is critical. However, when 
using a finite quantity of in-house servers, XVA desks lack compute power for 
night batches – for in-depth sensitivities, cross-gamma or stress-test analysis, for 
example – and must bear the cost of ‘sleeping resources’ for most of the day.

In what way would your organisation address these limitations?
Stéphane Rio: Those limitations are what ICA is focusing on. We don’t believe 
models are the issue, but rather the implementation of models in the right 
architecture and infrastructure. In delivering a fully serviced solution, we deal 
with the full processing chain and have made it our speciality to tackle big 
compute issues on behalf of banks. 

ICA has embraced all the recent big data and cloud technologies to address 
those issues and benefit from the following:
•  Combining the business, digital technologies and quant expertise into a 

single team

XVA management 
Challenges and solutions
Amid a lack of established best practice on how to manage and calculate XVA, for many firms standardision is priority. In our XVA 
management forum, a panel of industry leaders discusses key topics, including the effect a changing regulatory landscape is having 
on XVA management, the potential impact of cloud computing and web-based technology, and industry-wide limitations with XVA 
calculation and how the panellists’ respective organisations are addressing them



12risk.net

Sponsored Q&A

•  Leveraging the cloud for all non-confidential calculations, allowing the majority 
of compute to be fully scalable and elastic

•  Being able to save and manipulate enormous quantities of data in a database, 
rather than in memory.

This allows us to:
•  Optimise the distribution of calculations (avoid redundant calculations, 

minimise input/output, and so on)
•  Compute cross-gamma or stress-test scenarios on demand. More  

generally, compute what you need rather than what you can or what you 
did the day before

•  Access all intermediate calculations in real time, facilitating result investigation 
and generation of what-if scenarios in real time – pre-trade pricing, post-trade 
optimisations, changes of credit support annex terms, central counterparty 
upload, and so on.

How influential could cloud computing and web-based technology 
be in transforming the calculation of XVA and the management of 
XVA data?
Stéphane Rio: Using the elasticity and scalability of the cloud to run massive 
computations is now largely recognised as a required feature of new-generation 
XVA solutions (see When a cloud can light the way, page 18). The challenge, 
however, lies in how secure this data and these processes will be. Regulators 
have issued sensible guidelines, and additional security can be added to that. For 
instance, ICA’s process will strip any confidential information – such as notionals, 
counterparties or netting sets – out of deal descriptions before anything is sent 
to a public cloud.

Web-based technologies are also key contributors to the reshaping of the 
landscape for XVA and derivatives pricing and risk calculations. This is a core 
aspect of ICA’s value proposition; we support banks in implementing those 
technologies to modernise their architectures. Interestingly, digital innovators 
have also presented a new way to approach processes and build setups 
through the flexibility and efficiency of SaaS, which is surely the future of 
financial software.

Could a series of deregulations render investment in XVA 
calculations pointless?
Stéphane Rio: I don’t think one should take bets on whether there will be 
more or less regulation, as it is ever-changing. But whether because of changing 
regulation or deregulation, banks should be agile in their development processes 
and vendors’ upgrades.

Which XVAs are causing the most headaches at the moment, 
and why?
Stéphane Rio: A typical example of XVA metrics that is highly challenging – 
or will become so in the near future – is the CVA capital charge under the 
Fundamental Review of the Trading Book’s standardised approach. Solely for the 
spot capital, it requires the calculation of the CVA sensitivities across pretty much 
all risk factors – rates, volatility, credit, and so on.

For full KVA pricing, this process must potentially be repeated for every 
projected time step. Lastly, trade allocation for that metric will involve even more 
complex calculations – multidimensional and non-linear solving – so banks must 
calibrate compute power accordingly and consider strategies and clarity about 
allocations of capital by trade, desk and business line. n
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T echnology is a fickle thing. Older, 
less-efficient technologies that once 
revolutionised an industry are constantly 
being replaced by newer, better-

performing solutions. For risk managers weighed 
down by the computational burden of new market 
risk rules introduced by the Fundamental Review 
of the Trading Book, these technological advances 
cannot come soon enough.

That is why many large dealers are exploring 
cloud computing as a way of overcoming the 
perceived limitations of in-house systems. Those 
that have tried and tested cloud computing report 
calculations can be sped up by factors of tens, if not 
thousands, and IT costs slashed.

But exporting vast quantities of sensitive data to a 
third party comes with its own risks, and the necessary 
expense incurred in protecting that data threatens to 
chip away at the much-vaunted cost savings.

“One of the biggest computation-intensive use 
cases we have in the industry is the generation of full 
revaluation-based P&L vectors for the FRTB internal 
models approach,” says Suman Datta, a director in 
the portfolio quantitative research team at Lloyds 
Banking Group in London. “The number of scenarios 
and calculations required are enormous and the cloud 
gives firms the flexibility and scalability to deliver this.”

John Kain, a business development manager in the 
capital markets team at AWS, Amazon’s cloud services 
provider, expects regulatory reporting under FRTB to 
lead to a tenfold increase in portfolio risk calculations.

FRTB is not the only recent development to have 
stretched bank IT resources: derivatives valuation 
adjustments, or XVAs, have proved a comparable 
drain on dealers’ computational capacity. Portfolios 
containing thousands of trades require thousands of 
revaluations to be carried out at each time point in 
the future.

“I have heard a number of dealers saying they 
have had instructions not to increase their internal 
power or capacity any further because there are 
more and more requirements from XVAs and the 
FRTB,” says Stephane Rio, who runs The Independent 
Calculation Agent, an XVA and FRTB pricing firm 
that uses cloud technology. “They are turning to the 
only long term viable strategy for extending their 
capacity to meet those needs, which is leveraging the 
scalability and elasticity of the cloud.”

Three European dealers confirmed to Risk.net 
they will be transitioning to the cloud within the next 
year to manage their FRTB and XVA calculations. A 
spokesperson for Nordea said the bank is currently 
in late development and early test phase to use the 
technology for end-of-day and XVA calculations.

When a cloud can light the way

•	  Financial institutions are looking to cloud 
computing to carry out their complex 
calculations, marking a shift from investing 
heavily in in-house systems that are 
expensive to develop, maintain and upgrade.

•	  The search for additional computational 
capacity stems from regulatory demands 
such as FRTB and derivatives revaluation 
efforts, among others.

•	  Because firms can access much more 
hardware on the cloud, speedup of 
anywhere between 10 and 1,000 times 
is possible.

•	  Proponents argue cloud services are more 
economical, and can lead to savings on 
IT budgets.

•	  Others report having to spend more on 
security to protect sensitive data hosted 
on the cloud.

Need to know

Proponents of cloud computing say it is the only way to fully meet the demands of FRtB, XVA and other changes. By Nazneen Sherif

Cloud computing
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Cloud computing is a way of sharing hardware 
and software via a network such as the internet. The 
information is stored on physical servers maintained 
by a cloud computing provider. The main service 
providers in the financial services industry currently 
include AWS, the Google Cloud Platform and 
Microsoft Azure.

The advantage of sharing resources is that firms 
accessing the cloud need not maintain their own 
hardware and data centres on a permanent basis. 
Instead, they can access the platform from any 
location only when they need it, based on a pay-
as-you-go structure. The scale of the infrastructure 
offered by these large vendors also means dealers 
can access thousands of cores – both traditional 
central processing units (CPUs) and more 
advanced graphics processing units (GPUs) – 
on an ad hoc basis.

This on-demand scalability is a principal driver 
for cloud computing adoption among financial 
institutions.

“In the past, you would have to make the 
long-term decision, saying ‘I expect the business 
to grow X amount every year and hence this is the 
number of cores I need to buy in advance’. Whereas 
with the cloud, theoretically, you have that option 
where if you need 1,000 more cores tomorrow, 
you have the ability to do that easily,” says a risk 
manager at a European bank.

There are two ways of accessing cloud services. 
One is by sharing all resources with other firms 
signed up to the service, which means the number 
of cores available to a firm is not guaranteed. The 
second – and probably more preferred – option is 
using a ‘hybrid’ model where an institution reserves 
a fixed amount of cores so they can ensure they do 
not run out of machines at any given point in time.

For the European bank, which is currently in 
the development phase, the reason for moving to 

the cloud was being able to do its risk and pricing 
calculations more frequently – especially for more 
granular risk management.

“Our market risk front-office departments would 
like to have more risk measures available in real 
time done at a much higher frequency, rather than 
just once a day or three times a day; they now want 
six times a day – so they want to be on top of the 
risk they are running,” says the risk manager.

The bank confirmed it will be moving its XVA 
pricing, risk management, stress testing and 
prudential valuation calculations to the cloud within 
the next year.

Another large US bank is already using cloud 
computing to run quarterly capital and stress runs, 
but confirmed it is exploring further use cases.

Buy-side firms are also using the technology 
to improve computationally intensive calculations 
such as portfolio optimisation, where returns are 
optimised given the risk or volatility of the assets. 
This process includes estimation of the correlations 
between the assets to factor in how they move 
together. This becomes extremely cumbersome 
for portfolios with a large number of assets. For 
instance, for a portfolio of 100 assets, one would 
need to estimate a 100 by 100 correlation matrix.

In addition, correlations only capture the linear 
relationship between how assets move. Modelling 
non-linear relationships may be more accurate, but 
can be very intensive to run computationally.

“People could just do mean-variance optimisation 
but now you can optimise in various ways, given the 
computational power. Before, people used to use 
correlations to measure their covariance matrices, 
now you can use other types of measures of non-
linear relationships,” says one hedge fund manager 
in New York. “When you cross the line between 
linear relationships and non-linear relationships, 
that’s when computational needs accelerate at an 
exponential basis.”

Another application the firm is considering 
running on the cloud is machine learning.

Both banks and asset managers have been using 
machine learning techniques to explore a number 
of applications in finance including trade execution 
and model validation. Because machine learning 
techniques work by running millions of simulations 
to identify patterns in data and choosing the best 
course of action, high computing power is necessary 
to be able to employ them.

“Computational techniques like machine learning, 
which requires a lot more CPU or GPU usage, is 
probably one of the biggest applications [of cloud 
computing],” says the hedge fund manager.

One hand giveth…
Faster calculating speeds, coupled with the ability 
to scale up capacity at short notice, can result in 
dramatic cost savings, users say. Typically, a large 
dealer would require about 10,000 to 30,000 cores 
for five to seven hours a night to run their complex 
pricing and risk calculations, says a risk manager 
at a second European bank. Each CPU has about 
eight cores and costs around £1,000. GPUs, on the 
other hand, have about 3,000 cores each and could 
cost between £2,000 and £8,000. GPUs also entail 
additional maintenance and development expenses, 
not to mention power consumption, space and 
cooling requirements. For firms that have invested 
in their own technology, these machines sit idle for 
about half the time, says one large dealer.

While some banks have been able to mitigate 
that expense by switching to techniques such as 
adjoint algorithmic differentiation, which can be 
used as a relatively cost-free alternative to GPUs 
to calculate risk sensitivities for simple products, 
a significant portion of pricing and regulatory 
calculations still need raw computing power.

“If you have extremely complex computations 
that require lots of GPU parallelisation, we can 
now actually do that without spending tonnes of 
money setting up actual boxes in a data centre and 
paying for renting shelf and data centres – it’s really 
revolutionary across the entire IT industry,” says the 
New York-based hedge fund manager.

The risk manager at the first European bank 
agrees: “It’s not easy to buy a data centre. If you 

Risk.net spoke to two mainstream providers of cloud 
computing services to financial institutions: Amazon’s 
AWS and Microsoft Azure.

A number of dealers, insurers and stock exchanges 
are using the platforms to meet complex business needs.

Microsoft Azure signed up UBS to its service 
in 2017 to help the Swiss bank carry out its risk 
management calculations. Insurer MetLife also 
uses the service for its MetLife Integrated Actuarial 
Modeling Environment, running complex simulation 
models. The saving for MetLife is estimated to be 
between 45% and 55% in infrastructure costs.

Users of Amazon’s cloud service include asset 
manager Talanax, Spanish insurer Mapfre, Starling 

Bank, Liberty Mutual Insurance, Thomson Reuters, 
DBS Bank and Finra.

Financial services provider Aon Securities uses 
AWS to run financial simulations to value and 
manage insurance retirement products using GPUs.

“Aon has been able to lower the calculation and 
total reporting process time from 10 days to 10 
minutes,” says John Kain at AWS.

Nasdaq, Robinhood, London Stock Exchange and 
Aire also use the AWS service for analytics applications 
to optimise for cost effectiveness, scalability, and 
reduce processing times for risk-related workloads. 
The risk applications include actuarial calculations, 
CCAR, FRTB and Solvency II.

WhO IS ON the ClOud?

“It doesn’t make sense to own 
additional data centres. It is 
impossible to maintain. the cloud  
is the only option”  

Risk manager at a European bank

Cloud computing
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want to scale up, you need to plan a year in advance 
before that transaction gets done, whereas with the 
cloud you should be able to be much more agile in 
your ability to do that.”

“It doesn’t make sense to own additional data 
centres. It is impossible to maintain,” says the risk 
manager at a second European bank. “The cloud is 
the only option.”

Renting capacity on the cloud costs around £3.50 
for 24 GPUs per hour. Cloud computing providers 
also update their hardware regularly, which means 
banks would not face the additional expense of 
updating their technology.

UBS, which is using the Azure service, says it was 
able to bring down its running costs by 40% after 
moving its risk management platform to the cloud.

Not everyone is convinced there is an overall 
cost saving, however. Cheaper processing capability 
does not necessarily equate to lower IT spend – 
especially when the amount of required calculations 
is increasing.

“The primary goal is not to reduce the compute 
budget but rather to make computing more flexible 
and economical. In fact, cloud computing might 
lead to an increase in our compute budget by 
making more calculations feasible and economically 
worthwhile,” says the Nordea spokesperson.

…the other taketh away
One reason banks have been slow to use cloud 
service providers is because of concerns around 
the sharing of confidential client and portfolio 
information on an external platform. To carry out 
pricing and risk management calculations on the 
cloud, dealers must share sensitive data, which 
could include client information for portfolio-level 
calculations such as XVAs. Some argue the cost of 
securing this data on the cloud neutralises the gains 
from the pay-as-you-go arrangement.

“The drawback or challenge with using outside 
cloud solutions for banks, and XVA in particular, 
is around securing data, and especially sensitive 
client information. The setup around this is, and 
should be, really strict,” says a CVA trader at a third 
European bank.

A risk manager at an Australian bank agrees: 
“What we save in terms of grid costs we gain in 
terms of additional security costs. For example, 
our IT and security teams at all times are making 
sure the information we are posting to the cloud is 
appropriately protected – it’s not a free pass.”

Wary of relying on a service provider’s level of 
protection, some banks are considering withholding 
certain types of data from the cloud, to help plug 
any security gaps.

“We try not to provide information on four 
elements: client identity, our market data, our 

positions and also our own internal modelling,” says 
one XVA quant based in Europe.

This, however, is easier for pricing of individual 
trades. When it comes to more complex calculations 
such as XVAs, portfolio information is needed to 
aggregate results, which cannot be done without 
client data.

One way to get around this is to alter the data 
being sent to the cloud.

“Pre-processing can be done to hide information. 
For example, if you have a swap of a given notional 
you are not obliged to send the exact notional 
amount, you can divide it by a certain factor and 
rescale it back,” says the XVA quant.

Another solution is to split up computations 
into two steps, so the part that is run on the cloud 
does not contain any confidential information. 
Independent Calculation Agent conducts 85–90% 
of a portfolio computation on the cloud, but the 
remainder takes place either within the bank or 
ICA’s own data centre in a private and secured 
environment (see figure 1). The results are 
aggregated in a bank’s internal system.

“The only thing you will do locally are very 
simple operations, but very critical in terms of 
confidentiality,” says Rio at ICA.

Alexander Sokol, chief executive officer of vendor 
CompatibL, downplays the security concerns of 
mainstream cloud providers such as AWS, Azure 
and Google.

“Because of multiple security protocols such 
as encryption of data at rest and encryption of 
data in transit, a well-managed public cloud from 
a mainstream provider such as Amazon is more 
secure, or as secure as private data centres,” he says.

When disaster strikes
Security and cost considerations aside, proponents of 
cloud computing argue the technology offers benefits 
in terms of disaster recovery and data replication.

“For a fund like ours, it is a much safer way for 
disaster recovery. We have multiple virtual private 
clouds in different geographical regions, so we do 
half of our computations in northern Virginia and 
half in Ohio,” says the New York-based hedge fund 
manager. “So even if Northern Virginia were to 
suffer a failure, it’s literally seamless for us to switch 
to Ohio fully, rig up copy instances and rig up new 
machines. We can do all that in 15 to 20 minutes as 
long as we don’t lose internet access.”

But what happens if the disaster afflicts the cloud 
services provider? Overreliance on cloud platforms 
could mean when these firms experience a shutdown, 
dealers might find themselves short of resources.

As the risk manager at the first European 
bank says: “You are taking a risk in that you are 
dependent on an external provider, and what 
happens if that external provider goes down 
because of financial troubles? Then you have tied 
your fortunes to those cloud providers.” ■ 

Previously published on Risk.net
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1 Splitting computations on the cloud to protect sensitive data

Source: The Independent Calculation Agent
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The most common application being 
researched for machine learning is 
optimal execution. When large trades 
are executed in the market, it could 

potentially push prices in an unfavourable direction, 
so it makes sense that traders are keen on 
optimising this cost.

So far, most of the interest in applying machine 
learning technology to reduce trading costs has 
been from the buy side.1

However, recent research by quants from Standard 
Chartered shows this may be about to change.

In this month’s first technical, Evolutionary algos 
for optimising MVA2, Alexei Kondratyev, a managing 
director at Standard Chartered in London, and 
George Giorgidze a senior quantitative developer 
in the strats team within the same bank, propose 
machine learning techniques to optimise initial 
margin costs through trade selection.

Since September 2016, an increasing number 
of large dealers have been required to post initial 
margin3 on new non-cleared trades with other 
in-scope counterparties. The initial margin has to be 
funded, which creates material costs as more and 
more counterparties become involved. This cost is 
typically priced into trades in the form of a margin 
valuation adjustment (MVA).

Market participants have estimated initial margin 
funding requirements under the regime to be 
close to $1 trillion. As a result, a number of margin 
compression and risk optimisation solutions have 
popped up to reduce margin funding costs, each 
promising more significant margin reductions than 
the last.4

In their paper, Kondratyev and Giorgidze, apply 
two machine learning algorithms – a genetic 
algorithm and a particle swarm optimisation (PSO) – 
to reduce margin costs over the life of the portfolio, 
while keeping the market risk exposure of the 
portfolio the same.  

This is not easy. Because there are many 
parameters that evolve over time, the problem 
becomes heavily non-linear – that is, traditional 
optimisation methods do not work in simulating and 
reducing MVA.

This is where the benefits of machine learning 
come in, says Kondratyev.

Both algorithms used by the quants belong to the 
class of so-called evolutionary algorithms that run 
multiple iterations of chromosomes, tweaking one 
or two genes at a time, to find the most beneficial 
mutation. The StanChart quants apply the same 
principle to MVA.

Here the objective function, which defines the 
quantity to be maximised or minimised, is incremental 
MVA on a portfolio of trades. The chromosomes 
represent individual trades and the genes are trade 
details such as direction, notional size and currency.

“The algorithm works by finding such values in 
our solution, which is a trade or pair of offsetting 
trades that would minimise our objective function, 
and our objective function is incremental MVA, so 
we try to find the most negative incremental MVA,” 
says Kondratyev.

The algorithm randomly generates trades by 
tweaking one or two trade details each time, and 
keeps those that reduce MVA and discards those 
that increase MVA – similar to how evolution works. 
The genetic algorithm is used when trade details are 
discrete or categorical, such as currency for example. 
In this case all variables need to be discretised – for 
instance tenor, can be discretised by month. PSO is 
used when they are continuous – notional size, for 
instance, is a continuous variable.

“From generation to generation, our calculation 
becomes better and better, until finally we evolve to 
a population of solutions that converges to a global 
minimum of our objective function,” adds Kondratyev.

The resulting set of optimal trades could then be 
used to guide traders on what sort of trades and 
counterparties would help reduce their margin costs 
under the industry’s standard initial margin model.

“One could take a snapshot, look at portfolios, as 
of say, end of day, and then one would see that if a 
couple of trades are added into the portfolios, the 
Simm initial margin profiles would be flattened out 
and MVA would be reduced. Then, a proposal can 
be made to the trading function and it’s up to them 
to decide whether to go ahead and execute these 
trades,” says Kondratyev.

The techniques have been in use in Standard 
Chartered since the beginning of the year. The 
quants did not reveal what their MVA savings were, 
but they said it would be significant enough to 
justify the cost of development of the technique, 

also factoring in future increases in MVA as more 
counterparties come in scope of the margin rules.  

In the race to survive the rising costs of the 
derivatives business, it is not surprising that quants 
have started to use evolutionary algorithms to 
reduce what is likely to be one of their biggest 
costs – the funding initial margin.

Derivatives valuation adjustments, in general, 
are complex to model. So optimising them requires 
more innovative techniques.

While buy-side quants have done most of the 
early exploring of machine learning, Kondratyev 
and Giorgidze’s paper is a step in the right 
direction towards encouraging more sell-siders 
to explore the technique as well – which may 
become crucial as MVA becomes more substantial 
over time. ■ 

Previously published on Risk.net

Machine learning
Not just for the buy side
Sell-side quants develop machine learning technique to optimise margin costs. By Nazneen Sherif

“From generation to generation, our calculation becomes better and  
better, until finally we evolve to a population of solutions that converges  
to a global minimum of our objective function”  

Alexei Kondratyev, managing director, Standard Chartered

1  Day S, Quants turn to machine learning to model market impact,  
April 2018, www.risk.net/4644191

2  Kondratyev A & Giorgidze G, Evolutionary algos for optimising MVA, 
December 2017, www.risk.net/5374321

3  Risk.net, CFTC relief caps day of swaps margin mayhem,  
September 2016, www.risk.net/2469566

4  Woodall L, Non-cleared swaps compression battle heats up,  
March 2016, www.risk.net/4008711
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Automatic backward differentiation for
American Monte Carlo
Christian Fries derives a modified backward automatic differentiation (also known as adjoint algorithmic differentiation) for
algorithms containing conditional expectation operators or indicator functions. Bermudan option and XVA valuation are
prototypical applications. Featuring a clean-and-simple implementation, this method improves accuracy and performance. It
also enables accurate ‘per-operator’ differentiation of the indicator function (exercise boundary)

T
he Monte Carlo valuation of Bermudan-like products or any val-

uation requiring the calculation of conditional expectations of

future values (credit valuation adjustment (CVA) and margin val-

uation adjustment (MVA) are common examples) is a non-trivial prob-

lem. The standard solution is to use regression methods to estimate the

conditional expectation, often referred to as ‘American Monte Carlo’.

Another numerically intensive problem is the calculation of sensitivities

(Greeks), ie, partial derivatives with respect to model parameters. This

problem can be solved efficiently by adjoint automatic differentiation (see

Giles & Glasserman 2006).

If the valuation algorithm involves a conditional expectation operator,

the calculation of sensitivities then requires the differentiation of the con-

ditional expectation estimator. In some cases, the differentiation of the

conditional expectation may be omitted, eg, if the conditional expectation

is the input of an optimal exercise criterion and the sensitivity is a first-order

sensitivity (see Piterbarg 2004). However, in general, the differentiation

cannot be omitted. See the numerical results below for examples.

Since the exercise criterion is essentially an indicator function, the dif-

ferentiation of the indicator function is another numerically demanding

problem.

We consider the application of adjoint automatic differentiation to calcu-

late the sensitivities of a general product valuation involving a conditional

expectation operator and indicator functions. The automatic differentia-

tion of valuations involving conditional expectation has been discussed

in, for example, Andreasen (2014), Antonov et al (2018), Antonov (2017)

and Capriotti et al (2017).

To understand the different approaches, it is important to understand

that automatic differentiation comes in essentially two different flavours:

it can operate in forward mode (forwardAD; sometimes called simplyAD),

where the derivatives are propagated forwards from the inputs (parame-

ters) to the results (values), alongside the valuation; or it can operate in

backward mode (backward AD; sometimes called adjoint AD or AAD),

where one propagates derivatives backwards from the results to the inputs.

The numerical performance of the forward mode scales with the number

of parameters and is roughly independent of the number of results, while

the performance of the backward mode scales with the number of results

and is roughly independent of the number of parameters.

Adjoint algorithmic (backward mode) differentiation is the method of

choice when sensitivities have to be calculated for a single result (or a

few results) depending on many parameters. A striking example is the

valuation of an MVA from Isda-Simm initial margins (see Fries 2019).1

1 Isda-Simm is the International Swaps and Derivatives Association’s
standard initial margin model.

Applying an automatic differentiation, and an adjoint automatic differ-

entiation in particular, to a valuation algorithm containing a conditional

expectation reveals some issues. While in a Monte Carlo simulation most

operators are pathwise, and differentiation can be applied on a path-by-path

basis, the conditional expectation operator is non-pathwise, aggregating

information from adjoint future paths. A brute-force application of (A)AD

to the conditional expectation regression will differentiate the regression

basis functions (see Andreasen 2014; Capriotti et al 2017).

However, differentiating the regression basis function can always be

avoided, as long as the filtration does not depend on the model parameters.2

Then, the differentiation of a conditional expectation is the conditional

expectation of the differentiation:

d

dx
E.Z j Ft / D E

�
d

dx
Z

ˇ̌
ˇ̌ Ft

�
(1)

This result offers another striking optimisation: we may just check if

.d=dx/Z is an Ft -measurable random variable. If that is the case, we can

omit the outer conditional expectation operator on the right-hand side. Our

implementation at http://bit.ly/2tBxDQK contains an automatic tracking

of the measurability of random variables, which enables us to drop the

conditional expectation whenever possible.3

If the conditional expectation operator cannot be omitted (see below for

examples), the application of (1) still imposes a difficulty for the imple-

mentation of adjoint automatic differentiation. Since the AAD operates

backwards through the operators, we cannot apply (1) during the back-

ward propagation, as we have to calculate the inner derivative .d=dx/Z

first, which is only available after the backward sweep has been completed.

This issue may be solved by splitting the algorithm into two independent

backward-differentiation algorithms, which must then be combined (see

figure 1).

In Antonov et al (2018), the authors present a method called backward

differentiation (BD), which calculates the derivatives of the arguments of

conditional expectations (the so-called continuation values) alongside the

valuation. This algorithm has the advantage that the derivatives can be

calculated in a single sweep. To do so, they directly modify the valuation

code. The name ‘backward differentiation’ is somewhat misleading: the

BD algorithm in Antonov et al (2018) is propagating derivatives forwards

2 This is the case in supposedly all practical Monte Carlo applications:
the filtration is represented by the generated random numbers.
3 In Antonov et al (2018), the authors illustrate that for their algorithm
the differentiation of the conditional expectation can be avoided, given
the absence of path-dependency; however, this condition may be hard to
check.

risk.net 1
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1 Operator tree in which x9 is a conditional expectation of x6
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The differentiation algorithm can be decomposed into the differentiation
of x12, considering x9 as an independent variable, and the
differentiation of x9

(namely alongside the valuation algorithm). It is just that the algorithm

itself goes backwards over the time steps, since this is the way a Bermu-

dan callable is valued. While this allows us to calculate the derivative in

one sweep, it means the performance and complexity of the algorithms

scales with the number of parameters (see N� in Antonov et al (2018,

section 7.4)), as is typical for a forward mode AD.

In contrast, we will show how to efficiently apply a true backward

mode differentiation (ie, AAD backward differentiation) to a Bermudan

callable, without modification of the original valuation algorithm. The trick

that enables us to treat the conditional expectation in a single backwards

sweep relies on the following observations:

� The application of an automatic differentiation to an algorithm con-

taining a conditional expectation results in a linear combination of

conditional expectation operators (due to (1)).

� The valuation is an expectation, that is, the last operator is an

expectation operator.4

� For any two random variables A; B , we have that:

E.AE.B j Ft // D E.E.A j Ft /B/ (2)

Equation (2) allows us to apply the conditional expectation to the adjoint

differential. The adjoint differential is available during the backward differ-

entiation once the algorithm reaches the conditional expectation operator.

It remains to show (2) and (1) can be applied in an algorithm featuring

multiple, possibly iterative, conditional expectations, as is common in a

Bermudan backward algorithm.

� Setup and notation. Given a filtered probability space .˝; Q; fFt g/,
we consider a Monte Carlo simulation of a (time-discretised) stochastic

process, ie, we simulate a sample path !i of sequences of random vari-

ables. Assuming the drawings are uniform with respect to the measure Q,

4 It is actually sufficient that there is an outer operator, which is an
expectation or a conditional expectation on a coarser filtration.

this allows us to approximate the unconditional expectation EQ.X/ of a

random variable X via:

EQ.X/ � 1

n

n�1X

kD0

X.!k/

However, the calculation of conditional expectations EQ.X jFTi
/ is more

involved, since the Monte Carlo simulation does not provide a discretisa-

tion of the filtration fFt g. For the estimation of conditional expectations,

numerical approximations such as least-squares regressions can be used

(see Fries 2007).

Let z denote a given model parameter used in the generation of the

Monte Carlo simulation. Given a valuation algorithm that calculates the

unconditional expectation EQ.V / of a random variable V , where the cal-

culation of V involves one or more conditional expectations, we consider

the calculation of the derivative .d=dz/EQ.V /.

American Monte Carlo and Bermudan option valuation
We shall now give a brief definition of the backward algorithm. For more

details, see Fries (2007); we use similar notation here.

Let 0 D T0 < T1 < � � � < Tn denote a given time discretisation. Let

Vi , i D 1; : : : ; n, denote the time-Ti numeraire relative values of given

underlyings. Here, Vi are FTi
-measurable random variables. Then, let Ui

be defined as follows:

UnC1 WD 0

Ui WD Bi .E
Q.UiC1 j FTi

/; UiC1; Vi / (3)

where Bi is an arbitrary function.

� Bermudan option valuation. For a Bermudan option, Bi is given

by the optimal exercise criterion, ie, Bi .x; u; v/ WD G.x � v; u; v/, with:

G.y; u; v/ WD

8<
:

u if y > 0

v else

This defines a backward induction i D n; n � 1; : : : ; 1 for Ui . For a

Bermudan option, the unconditional expectation:

EQ.U1/

is the risk neutral (numeraire relative) value of the Bermudan option with

exercise dates T1 < � � � < Tn and exercise values Vi .

� Bermudan digital option valuation. For a Bermudan option, exer-

cise is optimal. This allows us to use a popular trick: ignoring the first-order

derivative of G.y; u; v/ with respect to y. Hence, for a Bermudan option

it is not necessary to differentiate Bi with respect to x (see Piterbarg

2004).

However, this is just a special property of the function G and holds for

first-order derivatives only. For example, the trick cannot be applied to a

Bermudan digital option, ie, Bi .x; u; v/ WD H.x � v; u; v/ with:

H.y; u; v/ WD

8<
:

u if y > 0

1 else

We will use this product as a test case of the methodology in the numerical

results.

2 risk.net April 2018
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Remark 1 The Bermudan digital option shows a dependency on the

first-order derivative with respect to the indicator condition y, since the

expectation of the two outcomes u and 1 differs, ie, we have a jump at

y D 0. For the classic Bermudan option, the expectations of u and v agree

at y D 0.

The (automatic) differentiation of a jump may appear to be an issue, but

it is possible to solve this elegantly in a stochastic automatic differentiation

(Fries 2017), as we will see later.

Automatic differentiation of the American Monte Carlo
backward algorithm
Let z denote an arbitrary model parameter. We assume the underlying

values Vi depend on z.5

We now differentiate the backward algorithm (3). For i D 1; : : : ; n, we

have:
d

dz
Ui D d

dz
Bi .E

Q.UiC1 j FTi
/; UiC1; Vi /

Applying the chain rule to Bi .x; u; v/ with x D EQ.UiC1 j FTi
/, u D

UiC1, v D Vi , and writing:

Bi D Bi .E
Q.UiC1 j FTi

/; UiC1; Vi /

to avoid the lengthy argument list, we get:

d

dz
Ui D dBi

dx

�
d

dz
EQ.UiC1

ˇ̌
ˇ̌ FTi

/

�
C dBi

du

dUiC1

dz
C dBi

dv

dVi

dz

and using .d=dz/EQ.Ui / D EQ..d=dz/Ui /:

d

dz
Ui D dBi

dx
EQ

�
dUiC1

dz

ˇ̌
ˇ̌ FTi

�
C dBi

du

dUiC1

dz
C dBi

dv

dVi

dz
(4)

� Forward differentiation. Applying this relation iteratively (plugging

the expression dUj C1=dz into the equation dUi =dz for j D i; : : : ; n � 1)

gives:

d

dz
Ui D

nX
j Di

�� j �1Y

kDi

dBk

du

�
dBj

dx
EQ

�
dUj C1

dz

ˇ̌
ˇ̌ FTj

�

C
� j �1Y

kDi

dBk

du

�
dBj

dv

dVj

dz

�
(5)

Indeed, plugging (4) for i C 1 into the right-hand side of (4) for i , we get:

d

dz
Ui D dBi

dx
EQ

�
dUiC1

dz

ˇ̌
ˇ̌ FTi

�
C dBi

dv

dVi

dz

C dBi

du

�
dBiC1

dx
EQ

�
dUiC2

dz

ˇ̌
ˇ̌ FTiC1

�

C dBiC1

du

dUiC2

dz
C dBiC1

dv

dViC1

dz

�

D
iC1X
j Di

�� j �1Y

kDi

dBk

du

�
dBj

dx
EQ

�
dUj C1

dz

ˇ̌
ˇ̌ FTj

�

C
� j �1Y

kDi

dBk

du

�
dBj

dv

dVj

dz

�

C
� iC1Y

kDi

dBk

du

�
dUiC2

dz

5 Think of z as an initial value of the interest rate curve (eg, calculat-
ing delta in a Libor market model (LMM)) or a volatility parameter
(calculating vega).

Repeating this iteration, we get i C 1 ! n on the right-hand side. Using

dUnC1=dz D 0 gives (5).

To shorten our notation, let:

Ai;j D
� j �1Y

kDi

dBk

du

�
dBj

dx
; Ci;j D

� j �1Y

kDi

dBk

du

�
dBj

dv

so (5) becomes:

dUi

dz
D

nX
j Di

�
Ai;j EQ

�
dUj C1

dz

ˇ̌
ˇ̌ FTj

�
C Ci;j

dVj

dz

�
(6)

This last equation would be natural in a forward (automatic) differen-

tiation, since we calculate 0 D dUnC1=dz, dUn=dz, dUn�1=dz, : : : ,

together with dVj =dz, in a forward direction. Here, ‘forward’ refers to

the order of operations in the algorithms, which run backwards over the

indexes j .

� Backward differentiation. Using backward (adjoint) automatic dif-

ferentiation to calculate the derivative in (6) would require a mixture of

backward propagation and the application of (6): we calculate dVj =dz,

followed by a forward application of (6). However, we can calculate the

derivative in a single backward differentiation sweep. We start with (4) for

i D 1. Since we are only interested in:

d

dz
EQ.U1/ D EQ

�
d

dz
U1

�

taking the expectation in (4) we get:

EQ
�

d

dz
U1

�

D EQ
�

dB1

dx
EQ

�
dU2

dz

ˇ̌
ˇ̌ FTi

�
C dB1

du

dU2

dz
C dB1

dv

dV1

dz

�

We may now use:

EQ
�

dB1

dx
EQ

�
dU2

dz

ˇ̌
ˇ̌ FT1

��
D EQ

�
EQ

�
dB1

dx

ˇ̌
ˇ̌ FT1

�
dU2

dz

�
(7)

to get:

EQ
�

d

dz
U1

�

D EQ
��

EQ
�

dB1

dx

ˇ̌
ˇ̌ FT1

�
C dB1

du

�
dU2

dz
C dB1

dv

dV1

dz

�
(8)

Plugging (4) into (8) and repeating the previous argument for i D
2; : : : ; k � 1, we get the forward equation iteratively:

EQ
�

d

dz
U1

�
D EQ

�
A�

1;k

dUkC1

dz
C

kX
j D1

C �
1;j

dVj

dz

�

where:

A�
1;i D EQ

�
A�

1;i�1

dBi

dx

ˇ̌
ˇ̌ FTi

�
C A�

1;i�1

dBi

du

C �
1;i D A�

1;i�1

dBi

dv

A�
1;0 D 1
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Using k D n, when UnC1 D 0, we have that:

EQ
�

d

dz
U1

�
D EQ

� nX
j D1

C �
1;j

dVj

dz

�

The recursive definitions of A�
1;i , C �

1;i have an intuitive interpretation

in a backward (automatic) differentiation algorithm. In this algorithm,

the conditional expectation operator on UiC1 is replaced by taking the

conditional expectation of the adjoint differential.

Remark 2 The important improvement here (which highly simplifies

the implementation) is that the calculation of the coefficients A�, C �

does not involve the direct (automatic) differentiation of the conditional

expectation operator. In addition, we can calculate the coefficients in a

single backward differentiation sweep, due to the application of (7).

� Automatic tracking of measurability. We can augment our imple-

mentation of random variables and operators by adding a property T .X/ to

a random variable X , such that X is Fs-measurable for s > T .X/. We set

T .W.t// WD t for the Brownian driver W of our model and T .c/ WD �1
for deterministic random variables c. For any operator Z D f .X; Y /, we

set T .Z/ WD max.T .X/; T .Y //.

Then, T enables the optimisation:

EQ.X j Ft / D X if T .X/ 6 t

Differentiation of the indicator function
For a Bermudan digital option, the differentiation of B also contains the

differentiation of the indicator function. The differentiation of the indicator

function also appears in other products, and it is even relevant for the

valuation of a Bermudan option, provided the estimation of the exercise

boundary is not optimal. Hence, we have to consider:

@

@X
1.X > 0/

where:

1.X > 0/.!/ WD

8
<
:

1 for X.!/ > 0

0 else

Automatic differentiation applied to algorithms involving indicator

functions results in a linear combination of differentiations of those indi-

cator functions. Hence, we have to evaluate expressions of the form:

A
@

@X
1.X > 0/

where A is a linear operator (the adjoint differential).

If we are only interested in the expectation of the final result, it is

sufficient to consider:

E

�
A

@

@X
1.X > 0/

�

This evaluates to:

E

�
A

@

@X
1.X > 0/

�
D E.A j fX D 0g/

which can be approximated by

E

�
A

@

@X
1.X > 0/

�
� E

�
A

1

2ı
1.jX j < ı/

�
(9)

In other words, if we are only interested in the expectation of the final

result, we can approximate:

@

@X
1.X > 0/ � 1

2ı
1.jX j < ı/

This approximation has an intuitive interpretation. First, we may observe

this approximation agrees with the result of a so-called payoff smoothing,

where the indicator function is approximated by a call spread:

1.X > 0/Œ!� �

8<
:

X.!/ C ı

2ı
for jX.!/j < ı

0 else

More strikingly, the approximation is just a central finite-difference

approximation of the derivative. It is:

@

@X
1.X > 0/ � 1.X C ı > 0/ � 1.X � ı > 0/

2ı

Here, we have replaced the automatic differentiation by a (local) finite-

difference approximation.

Since the implementation in Fries (2017) and at http://bit.ly/2FD86bo

has access to the full random variable X , we can achieve an important

improvement in the numerical algorithm: we can choose the ı shift that is

appropriate for the random variable under consideration.

For example, we can choose the size of the bin ı in (9) as a multiple of

the standard deviation of X :

E

�
A

@

@X
1.X > 0/

�
� E

�
A

1

2ı
1.jX j < ı/

�

2ı D ".E.X2//1=2 (10)

which essentially determines the number of paths used to approximate

the conditional expectation (9) by a binning.6 The effect of " (or ı) is

illustrated in our numerical results.

Our numerical results show there is an important advantage in applying

the approximation (10) on a per-operator basis with an appropriate bin

size ı (see figures 3 and 4).

Higher-order sensitivities
Higher-order sensitivities are made possible by applying the automatic

differentiation to the lower-order automatic differentiation. This is imme-

diately available in the implementation at http://bit.ly/2FD86bo (see the

test cases there for examples).

The results presented here remain valid for higher-order sensitivities,

since the automatic differentiation results in admissible operators, ie, oper-

ators on which the method is applicable. For example, the first-order

differentiation of the indicator function results in a conditional expectation.

Numerical results
� AAD delta of a Bermudan digital option. As a first test case, we

calculate the delta of a Bermudan digital option paying:

1 if S.Ti / � Ki > QU .Ti / in Ti and if no payout occurred before

0 otherwise

6 Assuming a normally distributed X , a value of " D 0:2 would result in
approximately 8% of paths being used for the estimation of the conditional
expectation (˙0:1 standard deviation).
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2 Delta of a Bermudan digital option using finite differences (red,
different finite-difference shift sizes) and stochastic AAD (green)
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where QU .T / is the time T value of the future payoffs for T1; : : : ; Tn. Note

that QU .Tn/ D 0, so the last payment is a digital option.

This product is an ideal test case: the valuation of QU .Ti / is a conditional

expectation. In addition, the conditional expectation only appears in the

indicator function. The delta of a digital option payoff is only driven by

the movement of the indicator function, since:

d

dS0
E.1.f .S.T // > 0// D �.f �1.0//

df .S/

dS0

where � is the probability density of S and 1.�/ is the indicator function

(see Fries 2007). Hence, keeping the exercise boundary fixed would result

in a delta of 0.

We calculate the delta of a Bermudan digital option under a Black-

Scholes model (S0 D 1:0, r D 0:05, � D 0:30) using one million Monte

Carlo paths. We consider an option with T1 D 1, T2 D 2, T3 D 3, T4 D 4,

and K1 D 0:5, K2 D 0:6, K3 D 0:8, K4 D 1:0. The implementation of

this test case is available at http://bit.ly/2FD86bo. The results are depicted

in figure 2.

We depict the finite-difference approximation as red dots with different

shift sizes on the x-axis. The finite-difference approximation was per-

formed with different Monte Carlo seeds. We see the well-known effect

that a finite-difference approximation of the derivative is biased for large

shift sizes and unstable/unreliable for small shift sizes. We only see stable

and unbiased results for shift sizes in the range 0.01–0.1.

We then depict the result of our method in green.7 Our method repro-

duces the stable and unbiased result. Its Monte Carlo error is indistinguish-

able in the graph.

To illustrate that taking the conditional expectation of the adjoint dif-

ferential is required, we repeat the calculation without this step. In blue,

we depict the value of an automatic differentiation when the conditional

expectation is omitted in the calculation of A�
1;i and reveal this would give

a wrong result. Even worse, if we keep the exercise boundary fixed, the

result is 0.

7 Since there is no shift size, there is no dependency on the shift size; thus,
we get a horizontal line.

A. Vega of a Bermudan swaption in the LMM

Memory
Algorithm Evaluation Derivative usage

Finite difference 2.0 s 25,600 s (7 hours) 1.5 GB

Efficient stochastic AAD 4.6 s 27 s 8.7 GB
Calculation times and memory usages for finite differences and backward algorithmic
differentiation algorithms. LMM with 15,000 paths and 25,600 theoretical model vegas

3 Vega of a Bermudan swaption using AAD for different values
of " for the differentiation of the indicator function in (10)

5
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2
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1
300,000 paths
30,000 paths

Vega with ε = 0.02
Vega with ε = 0

ε
1×10–7 1×10–6 1×10–5 1×10–4 1×10–3 1×10–2 1×10–1

V
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a

The calculations were performed for 30,000 paths with different bin
sizes " (blue). We depict a mean (blue line) and standard deviation
(grey). The green line marks the vega for " D 0 (ignoring the
differentiation of the indicator function). The red line marks the vega for
" D 0.2. Small values of epsilon result in unstable vegas, since only a
few paths are used for the estimation. The value 0.2 can be interpreted
statistically using 8% of the paths for the estimation of the derivative

� AAD vega of a Bermudan option (under LMM). As a second

test case, we consider the AAD calculation of the vega of a Bermudan

swaption (30Y in 40Y, with semi-annual exercise) under the LMM (40Y,

semi-annual, 320 time steps, 15,000 paths). The model has 25,600 inde-

pendent instantaneous volatility parameters, resulting in 12,640 effective

vega sensitivities. The performance of the algorithm is given in table A.

To analyse the numerical stability, we depict the values of a parallel vega

of the Bermudan swaption, where the conditional expectation is estimated

by a least-squares regression. In theory, the differentiation of the condi-

tional expectation can be ignored, since the Bermudan swaption valuation

can assume optimal exercises (see Piterbarg 2004). However, the Monte

Carlo error and the regression error will result in a non-optimal exercise

(see Fries 2006), which results in a (slightly) different vega. Assuming

optimal exercise will result in wrong hedge ratios, since an exercise will

be effectively suboptimal due to the biased valuation of the future exercise

dates. In addition, a comparison of the two different vegas (with and with-

out ignoring differentiation of the indicator function) gives an indication

of the quality of the conditional expectation estimator.

We may control the differentiation of the exercise boundary through

the parameter " in (10) (where " D 0 is interpreted as ignoring the dif-

ferentiation of the indicator function). The parameter " thus enables us to

investigate the optimality of each exercise boundary.

In figure 3, we show the AAD vega for different values of " for the

size of the bin estimating the derivative of the indicator function. Since

" determines the number of Monte Carlo paths used for sampling the

differentiation of the indicator functions, we see a larger Monte Carlo error

risk.net 5
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4 Vega of a Bermudan swaption using finite differences (blue,
different random number seeds and finite-difference shifts)
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600,000 paths
FD vega (30,000 paths)

AAD vega with ε = 0.02
AAD vega with ε = 0
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1×10–9 1×10–8

6

Finite-difference shift size

The red and green lines mark the values obtained by AAD, where the
differentiation of the indicator function was performed using (10) with
" D 0, ignoring differentiation of the indicator function (green), and
" D 0.2 (red), resulting in two different values for vega. The patterns
visible for finite-difference vegas are due to the same Monte Carlo seed
being used for different shift sizes, generating a jump in vega once a
Monte Carlo path crosses the exercise boundary

for very small ". The value " D 0 will switch off the differentiation of the

indicator function and hence result in the AAD differentiation ignoring

the differentiation of the indicator function.

In figure 4, we depict the classic, brute-force finite-difference approxi-

mation of the vega for different shift sizes and the stochastic AAD calcu-

lation of vega for " D 0 (green) and " D 0:2 (red). We see again that the

finite-difference approximation ignores the differentiation of the exercise

boundary for very small shifts. This is because no path crosses the exer-

cise boundary under a small shift. For larger shifts, the finite-difference

approximation includes the differentiation of the exercise boundary but

results in a huge Monte Carlo variance.
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It is almost impossible to obtain a reliable estimate for the Bermudan

swaption vega by finite differences, which includes the effect of a sub-

optimal exercise due to differentiation of the indicator functions. AAD

gives a reliable estimate (red). The finite-difference sample points show

some convergence to the correct solution for a narrow range of shifts sized

around 0.005.

A comparison of figures 4 and 3 highlights an advantage of the AAD

differentiation of the indicator function: while a finite-difference shift on

the parameter acts on all indicator functions (eg, all exercise dates) and an

optimal or good choice of the finite-difference shift is unclear, the AAD

differentiation allows for a per-operator determination of the size of the

estimation bin.

Implementation design
The implementation can be performed with a minimum of code complex-

ity and in few lines of code. The implementation contains an automatic

tracking of measurability and a per-operator estimation of the derivative of

the indicator functions. See http://bit.ly/2tBxDQK, http://bit.ly/2FD86bo

and Fries (2017) for details.

Conclusion
We presented a modification of the backward automatic differentiation to

apply a true adjoint algorithmic differentiation to algorithms that require

the estimation of conditional expectations and use indicator functions.

This algorithm avoids the differentiation of an approximation of the con-

ditional expectations to improve accuracy and performance. For indi-

cator functions, it enables us to perform a per-operator calculation of

the differentiation, allowing accurate treatment of individual exercise

boundaries. �
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