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Cutting edge: Risk management

Rogue traders versus value-at-risk and
expected shortfall
John Armstrong and Damiano Brigo show that, in a Black-Scholes market, value-at-risk and expected shortfall are irrelevant
in limiting traders’ excessive tail risk-seeking behaviour, as modelled by Kahneman and Tversky’s S-shaped utility. The
authors argue that to have effective constraints one can introduce a risk limit based on a second, but concave, utility function

I
n this article, we aim to analyse how classic risk measures such as

value-at-risk and expected shortfall (ES) fare in limiting excessive

tail risk-seeking behaviour in market players. We will model exces-

sive tail risk-seeking behaviour using Kahneman and Tversky’s S-shaped

utility (Kahneman & Tversky 1979). For example, S-shaped utility is nat-

urally suited to modelling the behaviour of a trader who cares only about

their pay packet and not about the overall loss of the bank, once the lat-

ter defaults. A traditional concave utility function would fail to reflect the

limited liability of traders.

We point out, via a payoff optimisation approach, that a trader may

optimise expected S-shaped utility in the presence of budget constraints

regardless of VAR or ES constraints, in the sense that the optimal expected

S-shaped utility without VAR or ES constraints will be exactly the same

as that with VAR or ES. VAR and ES are thus ineffective in limiting rogue

traders. This is particularly important when we consider ES was officially

endorsed and suggested as a risk measure by the Basel Committee in 2012

and 2013, partly for its ‘coherent risk measure’properties (Acerbi & Tasche

2002; Artzner et al 1999).

We then hint at a solution to the problem: it will be enough to introduce

a risk limit based on a second utility function, a traditional concave util-

ity, for the expected concave utility constraint to be effective in curbing

excessive tail risk-seeking behaviour. Indeed, for this concave utility-based

risk constraint the optimum will not be the same as in the case without

constraint. We do not prove the result in this article, instead referring the

reader to Armstrong & Brigo (2017). The proof given there relies on the

ideas used by Hardy and Littlewood to prove their inequality on symmetric

decreasing rearrangements (Hardy et al 1952).

In this article, we limit our analysis mostly to the Black-Scholes-Merton

case (Black & Scholes 1973; Merton 1973), since this is a benchmark

model for derivatives valuation and allows us to state our case without

excessive mathematical infrastructure and within a familiar setting. How-

ever, our result is much more general, and the general theory relies on a

result that is similar to the theory of rearrangements behind the Hardy-

Littlewood inequality (see Armstrong & Brigo 2017). This is not needed

or used here, however, as in this article we use more direct techniques that

allow us to avoid such complicated machinery. The result is thus more

immediate. The general result follows the same line of research as earlier

contributions to behavioural finance, prospect theory and portfolio choice,

which we will now review.

Expected utility maximisation under risk measure and budget con-

straints was considered in Basak & Shapiro (2001), but only under stan-

dard utility assumptions, and not an S-shaped utility in particular. In that

paper, it is shown that a market player forced by a VAR constraint to

reduce portfolio losses in some states would finance these reduced losses

by increasing portfolio losses in costly states where the terminal state price

density is large. As such states already have the lowest terminal portfolio

value for the unconstrained problem, the VAR constraint ends up fattening

the left tail of the terminal portfolio distribution. This leads to an increased

probability of extreme losses. In Cuoco et al (2008), it is shown that VAR

constraints play a better role when, as is done in practice, the portfolio

VAR is re-evaluated dynamically by incorporating available conditioning

information.Again, this is done under standard utility, and S-shaped utility

is not considered.

Prospect theory has been studied in relation to risk measures and port-

folio choice in a series of papers (He & Zhou 2011; He et al 2015; Jin &

Zhou 2008; Zhou 2010). These tackle problems similar but not equivalent

to the problem we consider here. He & Zhou (2011); Jin & Zhou (2008),

for example, do not study risk constraint in optimising S-shaped utilities

(with distortions), while in He et al (2015) the problem closest to our own

is a problem in which expected returns are optimised but expected utility

is not. Still, these papers find connections with rearrangements, use law-

invariant portfolio optimisation and employ techniques and proofs that

deal with and solve a wide range of behavioural finance problems that are

similar to those in this article and in our more general paper (Armstrong

& Brigo 2017).

The Black-Scholes market
We introduce briefly the Black-Scholes model (Black & Scholes 1973;

Merton 1973) for a market with a single risky asset and a bank

account. We consider a probability space with a right-continuous filtra-

tion .˝;F ; .Ft W 0 6 t 6 T /;P/. In the given economy, two securities

are traded continuously from time 0 until time T . The first security, the

cash account or bank account, is locally risk-free and its price Bt evolves

according to:

dBt D rBt dt; B0 D 1; with solution Bt D ert (1)

where r is a non-negative number. Usually, the risk-free rate r is an

.Ft /t>0 adapted process but, for simplicity, in this context we assume

it is a positive deterministic constant.

As for the second security, given the .Ft ;P/-Wiener process Wt , con-

sider the following stochastic differential equation for the price of such a

security, typically a stock:

dSt D �St dt C �St dWt ; 0 6 t 6 T (2)

with initial condition S0 > 0, and where � and � are positive constants.

Equation (2) has a unique (strong) solution, given by:

St D S0 expf.� � 1
2�
2/t C �Wt g; 0 6 t 6 T (3)
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Cutting edge: Risk management

We can write the probability law of ST easily by recalling that Wt is

normally distributed with mean zero and variance t . Let us call Ft the

cumulative distribution function (CDF) of St under the measure P. We

have a lognormal distribution for St :

Ft .y/ D P.St 6 y/ D P

�
Wt 6

ln.y=S0/ � .� �
1
2�
2/t

�

�

D ˚

�
ln.y=S0/ � .� �

1
2�
2/t

�
p
t

�

where ˚ is the CDF of the standard normal distribution.

Further, in the basic Black-Scholes model there are no transaction costs;

short selling is allowed without penalty or restrictions, and borrowing and

lending occur at the risk-free rate r , with no credit or default risk or funding

costs.

The full development of valuation in the presence of counterparty credit

risk, liquidity risk, funding and capital costs has been addressed in the

literature in recent years: see, for example, Brigo et al (2017), a work that

tries to stay as close as possible to Black-Scholes while including credit,

repurchase agreement and funding effects.

Hence, even if the Black-Scholes model neglects important aspects of

valuation, we work under its assumptions because we are interested in

S-shaped utility and ES limits in benchmark models. We expect our results

to hold in extensions of the basic model, particularly in cases where the

resulting valuation approach is very similar to the basic Black-Scholes

setting, as in Brigo et al (2017).

Simple claims and market price of risk
We consider a simple contingent claim. This is a contract guaranteeing a

payoff of the form �.ST / payable at maturity T . If we assume the market

is arbitrage-free and complete, the unique no-arbitrage price of our simple

claim at time 0 is the expected value:

V0 D EQŒe�rT �.ST /�

where the expected value is taken under a probability measure Q, the

risk-neutral measure, equivalent to P. Under this measure Q:

dSt D rSt dt C �St dW Q
t

where W Q is a standard Brownian motion under Q. It is immediately

obvious the ratio St=Bt is a Q-martingale, and this is why Q is sometimes

referred to as the martingale measure. We can write the Radon-Nikodym

derivative connecting the two equivalent measures as:

Zt D
dQ

dP

ˇ̌ˇ̌
Ft

D exp.��Wt � 1
2�
2t /; � D

� � r

�

In the particular version of the Black-Scholes setting we are working with,

this formula can also be written as:

Zt D
exp.�12�

2t C �.�=� � �=2/t/

S
��=�
0

.St /
��=� DW g.St /

The Radon-Nikodym derivative Zt becomes an explicit function of the

underlying St . This makes both the Radon-Nikodym derivative and the

payoff functions of the same variable ST and renders the analysis of their

interaction explicit.

1 Typical example of an S-shaped utility curve

Terminal wealth

Utility

The constant � is called the market price of risk or a particular version

of the Sharpe ratio. We have:

EQŒe�rT �.ST /� D EP

�
e�rT �.ST /

dQ

dP

ˇ̌̌
ˇ
FT

�

D EPŒe�rT �.ST /g.ST /� (4)

We assume � > 0, ie, � > r . This means a trader will be interested

in investing in stock S , since its expected return will exceed the risk-free

rate in the market.

Standardisation to a uniform risky asset
In our subsequent utility analysis, we will rescale the risky asset’s proba-

bility distribution to be uniform. In the Black-Scholes context, this means

that instead of expressing simple claims as functions ofST , we will express

them as functions of X WD FT .ST /. Indeed, we know that X has a stan-

dard uniform distribution. This allows us to write the price of the claim

as:

V0 D EPŒe�rT �.ST /g.ST /� D EPŒe�rT �.F�1T .X//g.F�1T .X//�

D e�rT
Z 1

0
f .x/q.x/ dx

where:

f .x/ D �.F�1T .x//; q.x/ D g.F�1T .x//

Given our expressions above forFT , g and our assumption on �, it is clear

q is decreasing. Further, a simple limit calculation based on the fact g.S/

is essentially a power to the �� shows:

lim
x!0C

q.x/ D C1 if � > 0

S-shaped utility and tail risk-seeking behaviour
It is observed in Kahneman & Tversky (1979) that individuals appear

to have preferences governed by an S-shaped utility function, u. This

is increasing, strictly convex on the left, strictly concave on the right,

non-differentiable at the origin and asymmetrical: negative events are

considered worse than positive events, which are considered good.

A typical S-shaped utility function is shown in figure 1.

Whether the cause of S-shaped utility functions is the irrationality or

limited liability of a market player, there is certainly good evidence they

are a useful tool for modelling real-world behaviour. A regulator or risk

manager could certainly consider them as a possibility.
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Cutting edge: Risk management

As not all of the characteristics of S-shaped utility functions are impor-

tant to us, we adopt a slightly more general definition. Suppose we have a

candidate utility function as an increasing functionu.w/, which represents

the utility of holding the wealth w. Inspired by the definition of S-shaped

utility in Kahneman & Tversky (1979), we assume the following estimates

hold:

u.w/ > �cjwj� for w < NR < 0; � 2 .0; 1/

u.w/ 6 kjwjˇ for w > NI > 0; ˇ > 1

for some positive constants c; k. We call such a utility function risk seeking

in the left tail and risk averse in the right tail.

In this work, we finally define formally an S-shaped utility curve u.w/

as an increasing function that is negative for w < 0, positive for w > 0,

concave for w > 0, risk seeking in the left tail and risk averse in the right

tail.

Utility maximisation under budget and expected
shortfall constraints
We are now interested in a utility maximisation problem in the Black-

Scholes market. The trader or investor wishes to optimise over all simple

claims � to find the claim that gives them the maximum utility:

sup
�

EPŒu.�.ST //� (5)

under constraints:

EPŒe�rT �.ST /g.ST /� 6 C (budget) (6)

ES.p; T; �/ > L0 (ES constraint) (7)

where ES.p; T; �/ denotes the expected shortfall of �.ST / over the hori-

zon T at confidence level p. In this formulation of the problem, we

implicitly assume the additional constraint that the expectation and ES

are both well defined and finite. We can reformulate the above problem

after uniform rescaling X D FT .ST /:

sup
f

Z 1

0
u.f .x// dx (8)

under constraints:

e�rT
Z 1

0
f .x/q.x/ dx 6 C (budget) (9)

1

p

Z p

0
f .x/ dx > L0 (ES constraint) (10)

The ES representation in this last formulation comes fromAcerbi & Tasche

(2002, (3.3)).Again, we implicitly assume the latter two integrals exist and

are finite.

We will now show that, under the assumption � > 0 (recall that q

depends on �), the ES constraint is not relevant in that the maximum

attained under the constraint is the unconstrained supx u.f .x//. Thus, for

S-shaped utility functions that are risk seeking in the tail, as we expect from

traders, the ES constraint is ineffective in curbing excessive risk taking.

First, we could consider all constant functions f and optimise on those.

If we denote by k the function constantly equal to k, the optimisation

problem is:

sup
k

u.k/ (under constraints) (11)

k 6 erTC (budget) (12)

k > L0 (ES constraint) (13)

So, we know that if u� is the optimal utility in the full problem, we have

as our lower bound the result for the ‘constant f ’ problem:

u� > sup
y2ŒL0;erTC�

u.y/

As it turns out, it is enough to move to the next simplest possible functionf ,

namely a two-step piecewise constant function, to obtain a much sharper

result.

Theorem 1 (Irrelevance of ES constraint in S-shaped utility maximi-

sation in a Black-Scholes market) Consider a Black-Scholes market in

which the bank account price B and the risky asset (stock) price S follow

the differential equations:

dBt D rBt dt; B0 D 1

dSt D �St dt C �St dWt ; S0 (14)

whereW is a standard Brownian motion under the measure P in a proba-

bility space .˝;F ; .Ft /t>0;P/, and � is a positive deterministic constant

modelling the volatility. Assume � D .� � r/=� > 0, and assume we are

given an S-shaped utility function u that is risk seeking in the tail; namely,

there are constants N and � such that:

u.w/ > �cjwj� for w < N; � 2 .0; 1/ (15)

Let U be the supremum over claims f defined by:

sup
f

Z 1

0
u.f .x// dx

under constraints:

e�rT
Z 1

0
f .x/q.x/ dx 6 C

1

p

Z p

0
f .x/ dx > L0

Then U D supy u.y/.

Proof We will use non-decreasing piecewise constant functions taking

only two values. Given three constants k1; k2; ˛, with 0 < ˛ < p and

k1 > k2, define:

f .xI k1; k2; ˛/ WD k21fx<˛g C k11fx>˛g

We will omit the arguments k and ˛ for brevity in this proof. Consider the

expected utility for this function:

EPŒu.f .X//� D

Z 1

0
u.f .x// dx D ˛u.k2/C .1 � ˛/u.k1/ (16)

Let us now write the two constraints in the optimisation problem: the

budget constraint and the ES constraint. The budget constraint reads:

Z ˛

0
f .x/q.x/ dx C

Z 1

˛
f .x/q.x/ dx 6 erTC
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Cutting edge: Risk management

or

k2

Z ˛

0
q.x/ dx C k1

Z 1

˛
q.x/ dx 6 erTC

The ES constraint reads:

1

p

� Z ˛

0
f .x/ dx C

Z p

˛
f .x/ dx

�
> L0

or

1

p
Œ˛k2 C .p � ˛/k1� > L0

Putting both constraints together, we obtain:

pL0 � .p � ˛/k1

˛
6 k2 6

C erT � k1
R 1
˛ q.x/ dxR ˛

0 q.x/ dx

In this constrained interval, we now pick a special point, the initial point,

thus assuming the ES constraint is met as an equality:

k2 WD
pL0 � .p � ˛/k1

˛

We need to check this constraint is consistent with our assumption that

k1 > k2. This holds as long as k1 is chosen to be sufficiently large and

positive, namely k1 > .L0/C. We denote the related function f as:

Nf .xI k1; ˛/ WD f .xI k1; .pL0 � .p � ˛/k1/=˛; ˛/

and the related expected utility (16) specialises to:

EPŒu. Nf .X//� D ˛u

�
pL0 � .p � ˛/k1

˛

�
C .1 � ˛/u.k1/ (17)

The budget constraint for Nf becomes:

pL0 � .p � ˛/k1 6
˛R ˛

0 q.x/ dx

�
C erT � k1

Z 1

˛
q.x/ dx

�
(18)

We can obtain a lower limit to the right-hand side of the budget constraint

(18) by noting:

˛R ˛
0 q.x/ dx

�
C erT � k1

Z 1

˛
q.x/ dx

�
>

˛R ˛
0 q.x/ dx

.C erT � k1/

If we now impose C erT < k1 < M1 for a sufficiently large positive con-

stant M1, then the right-hand side becomes negative and we can estimate

it further with:

˛R ˛
0 q.x/ dx

.C erT � k1/ >
1

q.˛/
.C erT � k1/ >

1

q.˛/
.C erT �M1/

where the first estimate follows from q being decreasing, so if we take

˛ 6 "˛ for a positive "˛ > 0, we conclude:

˛R ˛
0 q.x/ dx

�
C erT � k1

Z 1

˛
q.x/ dx

�
>

1

q."˛/
.C erT �M1/

The range for "˛ will depend on M1. However, we can estimate the left-

hand side of the budget constraint (18) from above by noting:

pL0 � .p � ˛/k1 6 pL0 � .p � "˛/k1

and this can be made sufficiently negative, say less than �1, by choosing

a sufficiently large k1:

k1 >
pL0 C 1

p � "˛

where we are further assuming "˛ < p. Thus, we may write:

pL0 � .p � ˛/k1 6 pL0 � .p � "˛/k1 6 �1

�1 6 1

q."˛/
.C erT �M1/

6 ˛R ˛
0 q.x/ dx

�
C erT � k1

Z 1

˛
q.x/ dx

�
(19)

as long as we make sure the central inequality:

�1 6 1

q."˛/
.C erT �M1/ (20)

holds. Since the denominator tends to C1 as " tends to 0, it suffices,

again, to choose a small enough "˛ .

We conclude that both the budget and ES constraints are met if we

require k1 and ˛ satisfy:

m1 < k1 < M1; ˛ < "˛ (21)

with the lower bound satisfying:

m1 > max

�
C erT;L0;

pL0 C 1

p � "˛

�

with constants M1 > 0 large enough and "˛ > 0 small enough, and with

ranges determined by the other constants C; r; T; L0; �. We assume these

hold from now on.

We now go back to our expected utility (17). Given the estimate we

obtained in (19), we can write:

pL0 � .p � ˛/k1

˛
6 �1

˛
<
�1

"˛

We may now invoke inequality (15) for the utility function to deduce:

u

�
pL0 � .p � ˛/k1

˛

�
> �c

ˇ̌
ˇ̌ pL0 � .p � ˛/k1

˛

ˇ̌
ˇ̌�

as long as ˛ 6 "˛ with "˛ chosen to be sufficiently small. We can use this

to estimate the expected utility in (17) as follows:

EPŒu. Nf .X//� D ˛u

�
pL0 � .p � ˛/k1

˛

�
C .1 � ˛/u.k1/

> �˛c
ˇ̌ˇ̌ pL0 � .p � ˛/k1

˛

ˇ̌ˇ̌� C.1 � ˛/u.k1/
Given that 0 < � < 1, we can conclude that for ˛ ! 0C the first term on

the right-hand side tends to zero, and we are left with:

lim
˛!0C

EPŒu. Nf .X I k1; ˛//� D u.k1/

with the budget and ES constraints satisfied implicitly via (21) when taking

the limit.

It follows that our general utility optimisation problem has the solution

u.k1/ when optimising in the subclass of admissible functions Nf . It also

follows that the optimum on a larger class will yield an optimal expected

utility larger than u.k1/ for all possible k1. However, it is obvious the

optimal expected utility will be bounded from above by the supremum of

the utility function. This then proves the claim that the optimal expected

utility will be equal to the supremum of the utility function. �
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Cutting edge: Risk management

2 Payoff used in the proof of the main theorem

f (x)

x
1

α0
k1

k2(α)

It may be interesting to check what the limiting function x 7!
Nf .xI k1; ˛/ looks like for small ˛. Recall that:

Nf .xI k1; ˛/ WD
pL0 � .p � ˛/k1

˛
1fx<˛g C k11fx>˛g

DW k2.˛/1fx<˛g C k11fx>˛g

Fixing k1, for very small ˛ the first constant becomes negative and very

large in absolute value, but on a very small interval x 2 Œ0; ˛/; the second

constant, however, is equal to k1 on a large interval x 2 Œ˛; 1�. We thus

have a digital option with an extremely negative constant payoff in a small

range of the rescaled uniform underlying, Œ0; ˛/, and with a much smaller

positive payoff in the remaining range Œ˛; 1�. This is illustrated in figure 2.

An effective risk constraint based on a second concave
utility
The focus of this short article is the negative result above. However, we

would like to hint at a possible solution for the ineffectiveness of the VAR

and ES constraints; this is developed fully in Armstrong & Brigo (2017).

Above, we have seen a result related to the following fact: an investor

with S-shaped utility function uI, with limx!C1 uI.x/ D C1 plus a

budget constraint, and who is subject only to ES (or VAR) constraints for

risk can find a sequence of portfolios satisfying these constraints that has an

expected uI-utility tending to infinity. This implies VAR or ES constraints

cannot limit excessive tail risk-seeking behaviour.

If the risk constraint is based instead on a second utility function of the

type:1

uR.x/ D �.�x/
�R1fx60g

with �R > 1, where the constraint requires the payoff � to be in the set:

f� W EŒuR.�.ST //� > Lg

1 We use the term ‘utility function’ for uR somewhat informally here, as
what is important for our result is the functional form of the limit set and not
whether it has been derived from any specific individual’s utility function.
One might loosely think of uR as the regulator’s or risk manager’s utility
function, although in practice the regulator or risk manager should choose
any risk limits to reflect the risk preferences of whoever bears the risk. We
have not attempted to consider how they should do this. We are simply
assuming one of the limits set has the given functional form.

for a negative loss levelL, then any sequence of portfolios whose expected

S-shaped utility uI tends to C1 will have expected uR tending to �1,

and thus will not be acceptable for the risk constraints. In this sense,

a classic concave utility uR adopted by the risk manager or regulator

can be used more effectively than VAR or ES in limiting excessive tail

risk-seeking behaviour in the presence of limited liability/S-shaped utility

investors.�
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