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ABSTRACT

This paper develops a prior-free version of Harry Markowitz’s efficient portfolio
theory, which allows the decision maker to express their preferences with regard
to risk and reward, even though they are unable to express a prior over potentially
nonstationary returns. The corresponding optimal allocation strategies are admissible
and interior, and they exhibit a form of momentum. Empirically, prior-free efficient
allocation strategies successfully exploit the time-varying risk premiums present in
historical returns.

Keywords: prior-free asset allocation; minmax drawdown control; nonstationary returns; fear-of-
missing-out; fear-of-loss; regret aversion.

1 INTRODUCTION

Financial markets are not stationary: they can change in durable ways. Sometimes
change is anticipated. For instance, US Treasury yields, which have been going down
for the last thirty years, mechanically cannot keep going down much longer (see Fig-
ure 1). In this case, we know that the next thirty years must look different. Sometimes,
change is only a possibility with which decision makers are concerned. For instance,
an investor interested in investing in a smart-beta index fund exploiting one of the
familiar premium anomalies (eg, value, momentum, low volatility, low beta) may be
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FIGURE 1 The ten-year US Treasury rate, 1962–2014.
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Source: FRED. URL: http://bit.ly/1MViNEQ.

plausibly worried that those strategies will become crowded and fail to deliver adver-
tised returns. In a nonstationary environment, past data provides limited guidance on
future behavior, which begs the question: how do we make practical risk management
and portfolio allocation decisions in such a nonstationary world?

The benchmark framework for portfolio allocation, the efficient portfolio theory of
Markowitz (1952), is normatively attractive but requires the decision maker to specify
priors over potential returns. This turns out to be practically difficult, even in static
settings. Indeed, Black and Litterman (1992) show that when historical data is used to
estimate a distribution of returns, plausible implementations of mean–variance opti-
mal portfolios lead to sensitive corner allocations that are intuitively unappealing.
In response, they suggest anchoring priors to a neutral prior under which owning a
value-weighted portfolio of all assets is optimal. In dynamic environments with a
time-varying and possibly nonstationary risk premium, the difficulty of specifying
priors is further increased.1 The decision maker must specify beliefs over the entire
sequence of returns, which is tricky: in high-dimensional state spaces, even full-
support priors can exhibit poor frequentist behavior (for instance, failing to converge

1 See Campbell (1984), Campbell and Viceira (1999) or Lettau and Ludvigson (2001, 2009) for
evidence of time variation in risk premiums.
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Mostly prior-free asset allocation 3

to true parameters; see, for example, Sims (1971), Diaconis and Freedman (1986) and
Ghosh and Ramamoorthi (2003)). As a consequence, neither Markowitz (1952) nor
Black and Litterman (1992) provide robust practical frameworks to guide asset allo-
cation in dynamic environments where the process for returns may be nonstationary.
Prior-free asset allocation seeks to provide such a framework by giving up on priors
all together.

The logic behind prior-free asset allocation matches Harry Markowitz’s description
of his actual rather than theoretical approach to portfolio construction (quoted in
Zweig (2007)):

I visualized my grief if the stock market went way up and I wasn’t in it – or if it
went way down and I was completely in it. My intention was to minimize my future
regret. So I split my contributions 50/50 between bonds and equities.

This paper formalizes Markowitz’s intuitive approach as an aversion to worst-case
drawdowns (ie, peak-to-trough losses) relative to reference safe and risky assets, in
this case, bonds and equities. It solves for the corresponding optimal dynamic asset
allocation policy and argues that it provides a systematic framework for asset alloca-
tion in nonstationary or novel environments. One simple takeaway is that Markowitz’s
50/50 strategy is optimal in one-shot settings but dominated in dynamic ones.

The model considers an agent who seeks to minimize the worst-case drawdowns of
their portfolio relative to benchmark risky and risk-free assets (say the aggregate stock
market and short-term US Treasuries). As in other models of non-Bayesian decision
making, such as the Gilboa and Schmeidler (1989) model of ambiguity aversion,
the framework is game theoretic. Nature is an adversary who seeks to maximize the
agent’s drawdowns relative to reference assets. In turn, the agent chooses the dynamic
allocation policy that is least gameable by nature. This yields a set of dynamic allo-
cation strategies that achieve minimal worst-case drawdowns relative to all possible
sequences of returns. Since these strategies are defined without reference to a prior
over returns, this paper refers to these strategies as prior-free optimal.

Our paper makes four points. The first is that prior-free optimal portfolios sat-
isfy a form of robustness to nonstationarity that is not satisfied by more obvious
approaches to asset allocation under a time-varying risk premium. Intuitively, asset
allocation strategies that experience large drawdowns with respect to either the safe
or the risky asset misjudge average geometric returns over a large time window. More
generally, large drawdowns can be interpreted as sample violations of optimality con-
ditions. Because a prior-free optimal allocation strategy guarantees small worst-case
drawdowns, there is no large time window over which it makes ex-post suboptimal
allocation choices. In contrast, any allocation strategy that is Bayesian optimal for
a full-support prior over finite hidden Markov models (Baum and Petrie 1966) is
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4 S. Chassang

gameable by nature: there exists a sequence of returns for which it experiences large
drawdowns compared with one of the two reference assets.

The second point is that prior-free asset allocation lets decision makers express
preferences with regard to risk and reward in the same way that modern portfolio
theory does. Indeed, prior-free optimal strategies define an entire frontier of mini-
mal drawdowns. At one extreme, being fully invested in the market guarantees zero
drawdowns against the market at the cost of high worst-case drawdowns against the
safe asset. Inversely, being fully invested in the safe asset guarantees zero drawdowns
against the safe asset at the cost of high potential drawdowns against the risky asset.
The frontier of points in-between lets the decision maker express trade-offs between
fear-of-losing (drawdowns against the safe asset) and fear-of-missing-out (drawdowns
against the risky asset). Points on this frontier map to dynamic allocation strategies
that move smoothly from aggressive to cautious.

The third point is that prior-free optimal strategies are amenable to numerical com-
putation. The agent’s worst-case drawdown minimization problem admits a Bellman
representation in which returns are not exogenously drawn from a prior, but rather
endogenously picked by nature. The corresponding value function and strategy can be
expressed as a function of a four-dimensional summary statistic of past history. This
representation allows us to establish some theoretical results of interest: prior-free
optimal portfolios are largely interior, and they satisfy a form of momentum. A multi-
asset version of the prior-free framework admits an equally tractable representation
after appropriate relaxation.

Finally, this paper provides a brief numerical and empirical exploration of this
prior-free approach to portfolio optimization. Under worst-case analysis, prior-free
portfolios significantly improve on popular portfolio construction rules, such as regu-
larly rebalanced portfolios (RRPs) and constant proportion portfolio insurance (CPPI
(Black and Perold 1992)), both of which sit quite far away from the minimal draw-
down frontier. More generally, this provides a systematic framework in which to
evaluate technical trading rules: any fully specified allocation strategy (this includes
RRPs, CPPI, time series momentum, volatility control and moving-average rules) can
be mapped against the worst-case drawdown frontier. The benefits of any strategy of
interest (eg, the in-sample performance of a volatility-control strategy) can then be
weighed against the potential worst-case drawdowns it may experience.

In principle, the high degree of robustness required from prior-free optimal strate-
gies may come at a cost. Indeed, if the true process for returns were independent
and identically distributed (iid), a fixed regularly rebalanced portfolio may deliver a
better performance than a prior-free optimal portfolio whose allocation changes with
realized market returns. This is not the case in the empirical sample of returns. Prior-
free optimal strategies perform well in the historical time series of returns, which
suggests that they are able to capture time variation in risk premiums present in the
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data. This is confirmed by a Henriksson and Merton (1981) test. Prior-free portfolios
achieve asymmetric ˇ exposures to the market in good and bad years (0.7 versus 0.4).
Importantly, there is little scope for data-snooping bias (Lo and MacKinlay 1990)
when backtesting prior-free optimal strategies. Prior-free optimal portfolios have a
single free parameter, the potential magnitude of moves of nature, and this is set in
advance of any exposure to data.

The paper connects to an applied literature in portfolio management that seeks
to usefully operationalize the approach of Markowitz (1952). Black and Litterman
(1992) also place priors at the center of their analysis. They show that naive imple-
mentations of Markowitz (1952) are extremely sensitive to prior assumptions over
returns or, equivalently, to the sample of data used to calibrate parameters. To address
the issue, they suggest anchoring priors to a default prior that rationalizes owning
the market portfolio. CPPI, developed in Perold (1986), Black and Jones (1987) and
Black and Perold (1992), also avoids priors and proposes a simple class of investment
rules that provide risky upside exposure, while providing prior-free downside risk
protection. The approach proceeds by using a cushion of safe assets, and leverag-
ing funds above this cushion. However, CPPI can experience large drawdowns with
respect to both the safe asset and the risky asset. Grossman and Zhou (1993) tackle
the issue of drawdown control in a Bayesian setting, where a fund manager wishes
to exploit an asset with known fixed expected returns but is subject to drawdown
constraints versus a safe asset.

The worst-case approach emphasized in this paper is related to models of ambiguity
aversion axiomatized by Gilboa and Schmeidler (1989) and to multiplier preferences
popularized in macroeconomics and finance by Hansen and Sargent (2001, 2008).
Cai et al (2000) and Pflug and Wozabal (2007) apply the ambiguity averse frame-
work to static portfolio construction, where it leads to more conservative allocations.
Glasserman and Xu (2013, 2014) extend the approach to dynamic environments with
trading costs and argue that it leads to a better out-of-sample performance. Note that
models based on multiplier preferences still rely on an anchoring prior that nature
can perturb at a cost. This theoretical literature has an applied counterpart (see, for
example, Asl and Etula 2012; Ceria and Stubbs 2006) that seeks to better take into
account model uncertainty when making portfolio allocation decisions.

Because drawdowns use reference assets to benchmark performance, the prefer-
ences explored in this paper are related to regret-averse and reference-dependent
preferences that have received attention in the statistical (Milnor 1954; Savage 1951;
Stoye 2008; Wald 1950) and behavioral literatures (Kőszegi and Rabin 2006; Tversky
and Kahneman 1991). It is closely related to the question of online regret minimiza-
tion originally studied in Blackwell (1956) and Hannan (1957) (for a recent reference,
see Cesa-Bianchi and Lugosi (2006)). The portfolio allocation problem studied here
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is also connected to Cover (1991) and DeMarzo et al (2009), both of which derive
prior-free lower bounds on portfolio performance.

More broadly, this paper contributes to a growing agenda in economics that seeks
to rethink economic design questions from a prior-free perspective. Segal (2003),
Bergemann and Schlag (2008), Hartline and Roughgarden (2008), Madarász and Prat
(2016) and Brooks (2014) study auctions, pricing and screening. Chassang (2013),
Carroll (2014) and Antic (2014) study incentive provision. The current paper adds to
this agenda in two ways. First, it provides a prior-free version of Markowitz (1952),
which allows decision makers to express meaningful preferences with regard to risk
and reward while allowing for arbitrary nonstationarity in returns. Second, it provides
an empirical evaluation of prior-free approaches in a practical context. It shows that
the cost of robustness need not be large and that, in fact, prior-free optimization
may improve on existing benchmarks in the realized historical sample. In addition,
prior-free approaches reduce concerns of data-snooping bias.

This paper is structured as follows. Section 2 defines the framework and the prior-
free asset allocation problem. Section 3 quantifies robustness to nonstationarity and
shows that it is not achieved by a natural class of Bayesian optimal policies. Section 4
provides a general Bellman characterization of prior-free optimal allocation policies.
Section 5 establishes qualitative properties assuming that trading costs are equal
to zero. Section 6 extends the framework to multiple assets and reinterprets low
drawdowns as sample versions of optimality conditions. Section 7 provides a brief
empirical evaluation of prior-free asset allocation strategies. Section 8 concludes.
Appendix A (available online) extends the empirical analysis and discusses decision-
theoretic foundations, as well as possible Bayesian refinements, of the prior-free
approach. Proofs are contained inAppendix B (also available online) unless mentioned
otherwise.

2 FRAMEWORK

2.1 Setup

Returns

An investor with finite horizon N 2 N allocates resources across two assets: a safe
asset with returns at time t 2 N denoted by r0

t , as well as a risky asset – say the market
– with returns at time t denoted by r1

t (see Section 6 for an extension to multiple risky
assets). The set of possible returns rt D .r0

t ; r1
t / at time t is denoted by M � R

2

and referred to as moves of nature. For simplicity, and anticipating computational
implementation, it is assumed that set M is finite and satisfies the following minimal
richness assumption.

Journal of Risk www.risk.net/journals



Mostly prior-free asset allocation 7

Assumption 2.1 There exists r 2 M such that r0 D r1. There exist .r; Or/ 2 M 2

such that r0 > r1, and Or0 < Or1. Set M contains at least three nondiagonal returns r

such that r0 ¤ r1.

In computational applications, set M will take the form

M D fr0g � fr0 C n� j n D �k; : : : ; Ckg for k 2 N:

Let us denote by Nr D maxfjr0j; jr1j for r 2 M g an upper bound to the magnitude of
returns in M .

Allocations

The set of possible allocations A D �.f0; 1g/ � R is compact and convex. An
allocation at 2 A � R

2 at the beginning of period t yields a return ra
t D hat ; rt i,

where h�; �i denotes the usual dot product.
Given returns rt for period t , and invested wealth wt at t , wealth and asset shares

at the beginning of period t C 1 (denoted t C 1�) are given by

wtC1� D wt .1 C ra
t /; a0

tC1� D a0
t .1 C r0

t /

1 C ra
t

; a1
tC1� D a1

t .1 C r1
t /

1 C ra
t

:

(2.1)
It is possible to reallocate assets at the beginning of each period, but reallocation is
costly. Specifically, moving from atC1� to atC1 costs a proportion c.atC1� ; atC1/ >
0 of the existing asset base. Denote by Nc � maxa; Oa c.a; Oa/ the highest trading cost.
In numerical applications, trading costs will take the form c.a; Oa/ D c1ja0 � Oa0j;
with c1 D 0:002 (ie, 20 basis points (bps)). Invested wealth after reallocation is
wtC1 D Œ1 � c.atC1� ; atC1/�wtC1� .

Allocation strategies

An allocation strategy ˛ maps each history of returns ht D .rs/s2f0;:::;t�1g 2 H to
an allocation at . We denote by A the set of possible allocation strategies.

Taking into account trading costs, the returns associated with allocation strategy ˛

in period t , denoted by r˛
t , take the form

1 C r˛
t D .1 C h˛.ht /; rt i/.1 � c.at� ; ˛.ht ///: (2.2)

For a sufficiently large state space Z, any allocation strategy can be described as
an automaton depending on state z 2 Z with transition rule �:

˛ W z 2 Z 7! ˛.z/ 2 A; (2.3)

� W .z; r/ 2 Z � M 7! �.z; r/ 2 Z: (2.4)
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8 S. Chassang

An initial allocation a0 and a sequence of returns r D .rt /t2N induces the sequence
of allocations .at /t>1 defined by

zt D �.zt�1; rt�1/ and at D ˛.zt / for all t > 1:

This paper seeks to formalize the following normative question: what are good
dynamic asset allocation strategies for a decision maker who worries that returns may
be arbitrarily nonstationary?

2.2 Bayesian optimal asset allocation

A standard model of dynamic asset allocation might take the following form. A deci-
sion maker with investment horizon N and log utility over final wealth is able to place
a prior � 2 �.M N C1/ over possible returns. Their optimal asset allocation strategy
˛ then solves

max
˛2A

E�

� NX
tD0

log.1 C r˛
t /

�
: (2.5)

Unfortunately, this positive description of behavior provides little normative guid-
ance to investors. This becomes particularly clear after mapping the problem of choos-
ing an asset allocation strategy in the axiomatic framework of subjective utility theory
(Savage 1972). A realized sequence of returns r D .rt /t>0 is an event. A dynamic
asset allocation strategy is a Savage act, mapping events to financial outcomes for the
decision maker. Provided that a decision maker has well-behaved preferences over
acts, subjective expected utility theory tells us that the decision maker’s behavior can
be represented as maximizing an expected utility function.

Subjective utility theory is not a normative framework. Priors are inferred from
preferences over acts; optimal acts are not obtained from priors. Still, subjective utility
theory is routinely used for normative purposes. Black and Litterman (1992) implicitly
highlight some of the difficulties that normative uses of subjective expected utility
generate. They specify a Gaussian prior over returns and use historical estimates to set
mean and covariance parameters. Presuming mean–variance preferences, they show
that such beliefs imply extreme corner allocations that are intuitively unappealing.
They then propose using priors that would justify holding a value-weighted portfolio.
The ex post assessment of Black and Litterman (1992) that extreme allocations are
unappealing, and their response – modifying priors until they yield a more palatable
allocation – demonstrate that priors are an output, inferred from preferences over
actions, and not a primitive of the decision problem.

The normative decision rule, which would start by eliciting beliefs and then max-
imizing utility, is even more tricky to implement in the dynamic setting considered
in this paper. When the process for returns is potentially nonstationary, picking well-
behaved priors turns out to be difficult. The literature on frequentist properties of
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Bayesian estimates (Diaconis and Freedman 1986; Ghosh and Ramamoorthi 2003)
shows that generic priors over large-dimensional objects (here, sequences of returns)
may fail to satisfy consistency properties that common frequentist estimators robustly
satisfy. Section 3 makes this point concretely.

2.3 Mostly prior-free asset allocation

This paper is written from a normative perspective. It specifies preferences over allo-
cation strategies, argues that they are intuitively appealing and studies the strategies
that maximize them. Markowitz’s description of his own investment behavior suggests
the following three observations:

� decision makers fear net losses;

� decision makers fear missing out on potential gains; and

� decision makers do not have sophisticated beliefs over patterns of returns.

Definitions 2.2, 2.3 and 2.4 formalize preferences over allocation strategies that
capture these premises.

Definition 2.2 (Relative drawdowns) Given an allocation strategy ˛ W H !
�.f0; 1g/ and a sequence of returns r � .rt /t2f0;:::;N g, drawdowns D0

N and D1
N

relative to the safe and risky asset are defined as

D0
N .˛; r/ D max

T 2f0;:::;N g
T 02f0;:::;T C1g

TX
tDT 0

log.1 C r0
t / � log.1 C r˛

t /; (2.6)

D1
N .˛; r/ D max

T 2f0;:::;N g
T 02f0;:::;T C1g

TX
tDT 0

log.1 C r1
t / � log.1 C r˛

t /: (2.7)

Given realized returns r � .rt /t2f0;:::;N g, the relative drawdowns of strategy ˛

correspond to strategy ˛’s maximum relative losses against the safe and risky assets
over arbitrary subperiods ŒT 0; T � � Œ0; N �. Figure 2 shows how to compute the
drawdowns of a 50/50 fixed-weight strategy over the market and the risk-free rate
during the 2007–12 period.2 Note that the time windows ŒT 0; T � over which each
drawdown occurs are different for the risk-free and risky assets.

Definition 2.3 (Worst-case drawdowns) Given a strategy ˛, worst-case draw-
downs are defined by

ND0
N .˛/ D max

r2M N C1
D0

N .˛; r/; (2.8)

ND1
N .˛/ D max

r2M N C1
D1

N .˛; r/: (2.9)

2 Returns are obtained from Kenneth French’s data library, available at http://bit.ly/1jwasZk.
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10 S. Chassang

FIGURE 2 Drawdowns relative to the safe and risky assets for a 50/50 fixed-weight
strategy, 2007–12.
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Potential net losses are captured by strategy ˛’s worst-case drawdown ND0
N .˛/

against the safe asset. Potential foregone gains are captured by strategy ˛’s worst-case
drawdown ND1

N .˛/ against the risky asset.
The decision maker’s fear-of-loss and fear-of-missing out are expressed by their

willingness to trade off drawdowns against the safe and risky assets. Allocation
strategies that attain optimal trade-offs are referred to as prior-free optimal.

Definition 2.4 (Prior-free efficient portfolios) A portfolio allocation strategy ˛

is prior-free efficient if there exists � 2 �.f0; 1g/ such that ˛ solves

min
Ǫ 2A

max
i2f0;1g

�i
ND i

N . Ǫ /: (P�)

Given � 2 �.f0; 1g/, denote by ˛� a solution to (P�). The corresponding drawdowns
are denoted by ND i;�

N .�/ � ND i
N .˛�/. The minimal drawdown frontier � is described

Journal of Risk www.risk.net/journals



Mostly prior-free asset allocation 11

by

� � f. ND i;�
N .�//i2f0;1g j � 2 �.f0; 1g/g:

Define the associated function �.D0/ D inffD1 j . OD0; D1/ 2 � for OD0 6 D0g.

Lemma 2.5 Frontier mapping � is continuous and strictly decreasing.

Frontier � lets the investor make continuous trade-offs between fear-of-loss and
fear-of-missing-out in a simple and straightforward manner. Given a tolerable worst
case drawdown ND0 against the safe asset, it returns the best possible drawdown
guarantee ND1 against the risky asset.

Two extreme points

Two points of the frontier are easily characterized. At one extreme, it is possible to
ensure no drawdowns against the safe asset by being entirely invested in the safe asset.
This results in the largest possible drawdowns against the risky asset. Inversely, it is
possible to ensure no drawdowns against the risky asset by being entirely invested in
the risky asset. This results in the largest possible drawdowns against the safe asset.

The remainder of this paper is interested in the set of points in between these
two extremes. It argues that the corresponding prior-free asset allocation strategies
achieve the following desiderata: (i) they provide robust performance guarantees for
arbitrarily nonstationary processes for returns; (ii) they let the decision maker express
meaningful risk preferences over complex acts in a simple manner; and (iii) they
perform well in the data.

3 ROBUSTNESS TO NONSTATIONARITY

This section motivates the use of prior-free optimal strategies by (i) highlighting their
robustness to nonstationarity, and (ii) highlighting the difficulty of finding priors that
lead to robust Bayesian-optimal strategies. Section 6 further motivates the use of
drawdown-minimizing strategies by reinterpreting drawdowns as sample versions of
standard optimality conditions.

3.1 Drawdown control and robustness

Intuitively, strategies that guarantee low drawdowns perform well in environments
with time-varying risk premiums, since they guarantee performance close to that of
the best-performing asset over any subperiod ŒT 0; T � � Œ0; N �. This is captured by
the following performance bound.

www.risk.net/journals Journal of Risk



12 S. Chassang

Proposition 3.1 (A performance bound) Consider a strategy ˛ and a sequence of
returns r . For all time periods T1 < T2 6 N , and for all i 2 f0; 1g,

T2X
tDT1

log.1 C r˛
t / >

� T2X
tDT1

log.1 C r i
t /

�
� ND i

N .˛/:

For all time sequences 0 D T1 < T2 < � � � < Tn D N C 1,

NX
tD0

log.1 C r˛
t / >

n�1X
kD1

max
i2f0;1g

�� TkC1�1X
tDTk

log.1 C r i
t /

�
� ND i

N .˛/

�
:

In other words, drawdown guarantees imply lower bounds on the performance of
strategy ˛. Up to a penalty ND i .˛/, it performs at least as well as asset i over any
subperiod ŒT1; T2�.

Conversely, a strategy that experiences a large drawdown (say of order N ) vis à
vis either asset is making a binary allocation error (whether to be invested in the safe
or risky asset) over a long period of time. This motivates the following definition.

Definition 3.2 A sequence of asset allocation strategies .˛N /N 2N (indexed on
increasing time horizon N ) is said to be robust to nonstationarity if and only if

lim
N !1

ND i
N .˛N /

N
D 0 for all i 2 f0; 1g:

We now show that for a natural class of full-support priors, Bayesian optimal
strategies are not robust to nonstationarity.

3.2 Fragility of finite hidden Markov models

Hidden Markov models are a popular and flexible way to model time-varying pro-
cesses. However, Proposition 3.3 (below) shows that priors over hidden Markov
models lead to strategies that can be defeated by an adversarial nature.

A K-state hidden Markov chain over returns with states in Z D f1; : : : ; Kg is
described by m D .�; �/ 2 .�.Z//Z � .�.M//Z , where � W Z ! �.Z/ is a
Markov chain describing transitions between unobserved states z 2 Z (with initial
state normalized to 1), and � maps states z 2 Z into distributions over observed
returns r 2 M . A hidden Markov chain induces a stochastic process over unobserved
states .zt /t>0 and observed returns .rt /t>0 defined by z0 D 1, and

ztC1 � �.zt / and rt � �.zt / for all t > 0:

Note that the set MK of hidden Markov chains m with fewer than K states is finite
dimensional and compact. This implies that one can easily define full-support priors
� over MK .
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Any Bayesian prior � 2 �.MK/ over K-state hidden Markov chains is associated
with Bayesian optimal policies ˛B

� solving

max
˛2A

E�

� NX
tD0

log.1 C r˛
t /

�
:

Such a Bayesian-optimal strategy reflects the investor’s updating over the likelihood
of different underlying Markov chains as well as the state these chains may be in.
Note that the investor’s posterior belief is itself a Markov chain with infinite (in fact
continuous) state space �.MK/. As a result, it is able to capture many transient
patterns of returns, and it is a plausible guess that the corresponding allocation policy
could be robust in the sense of Definition 3.2. Proposition 3.3 shows that this is not
the case.

Proposition 3.3 Take K; c; M as given. For any full-support prior � 2 �.MK/

there exists 	 > 0 such that, for all N 2 N and any Bayesian optimal strategy ˛B
�,

max
r2M N C1

max
i2f0;1g

D i
N .˛B

�; r/ > 	N:

In other words, any Bayesian-optimal allocation policy derived from a full-support
prior over finite hidden Markov chains is susceptible to drawdowns of order N . As a
result, it is not robust to nonstationarity.

3.3 The possibility of robustness

To be useful as a selection criterion, robustness to nonstationarity needs to be
nonempty. Proposition 3.4 shows that there exist allocation strategies which guarantee
sublinear drawdowns for all possible realized sequences of returns.

Proposition 3.4 (Robustness) For all Nc < 1 and Nr , there exists h > 0 and a
strategy ˛ such that

max
r2M N C1

max
i2f0;1g

D i
N .˛; r/ 6 h

p
N for all N 2 N: (3.1)

Together, Propositions 3.3 and 3.4 establish that it is possible to find strategies that
are robust to nonstationarity, but they cannot be obtained by modeling the underlying
returns as an unknown finite hidden Markov model.

An immediate corollary of Proposition 3.4 is that prior-free optimal strategies are
robust to nonstationarity. Indeed, they achieve the smallest possible drawdowns.

Corollary 3.5 For any � 2 .0; 1/2; the sequence of prior-free optimal strategies
.˛�;N /N 2N (indexed on time horizon N ) is robust to nonstationarity.
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It is important to note that robustness to nonstationarity is only an asymptotic
property that is achieved by many strategies. In this respect, focusing on prior-free
optimal strategies, which achieve exact minimal drawdowns, has several benefits.

� It provides the best possible control on drawdowns, optimizing constants, which
could matter for empirical evaluations with moderate investment horizon N .

� By providing a uniquely optimal strategy, it limits the scope for specification
search, alleviating the concerns of overfitting prevalent in the asset-pricing
literature (Lo and MacKinlay 1990; Novy-Marx 2014).

� It provides a benchmark by which to evaluate the robustness of asset allocation
strategies that are attractive for other reasons (eg, in-sample performance).

� It provides a systematic framework for optimal dynamic allocation that can
incorporate relevant economic features of the problem, such as trading costs or
restrictions on the process of returns (bounds on P/E ratios).3

4 COMPUTING PRIOR-FREE OPTIMAL STRATEGIES

This section shows how to express the problem of computing prior-free optimal asset
allocation strategies as a manageable dynamic programming problem. The first step
is to identify a convenient state space. Consider an allocation strategy ˛.

For i 2 f0; 1g, and T 2 f0; : : : ; N g, define regrets

Ri
T .˛; r/ � max

T 02f0;:::;T C1g

TX
tDT 0

log.1 C r i
t / � log.1 C r˛

t /: (4.1)

Regret Ri
T differs from drawdown D i

T in that the endpoint T of the period over which
underperformance is measured is fixed. In fact, we have that D i

T D maxT 06T Ri
T 0 .

Lemma 4.1 shows that Ri
T can be used to compute worst-case drawdowns. It is

described by a simple dynamic process.

Lemma 4.1 For all ˛ 2 A,

(i) maxr2M N C1 D i
N .˛; r/ D maxr2M N C1 Ri

N .˛; r/ for all i 2 f0; 1g;

(ii) Ri
T C1 D ŒRi

T C log.1 C r i
T C1/ � log.1 C r˛

T C1/�C for all T < N .

Point (i) implies that to compute drawdown-minimizing strategies, it is sufficient to
compute regret-minimizing strategies (this result uses the fact that there exists a return

3 See Appendix A (available online) for a discussion of various ways to place restrictions, including
probabilistic ones, on the set of possible returns.
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r such that r0 D r1). Point (ii) clarifies why this observation is valuable: regrets at
time T C 1 can be computed as a function of regrets at time T and returns at time
T C1. In contrast, drawdowns at time T C1 depend on drawdowns at time T , returns
at time T C 1 and returns in previous periods.

Denote by RT � .Ri
T /i2f0;1g the vector of regrets, and define state zt D

.t; at� ; Rt�1/. For any � 2 �.f0; 1g/, value function W� over states z is recursively
defined as follows:

W�.zT / D
(

maxi2f0;1g �iR
i
T if T D N C 1;

minaT 2A maxr2M W�.zT C1/ if T 6 N;
(4.2)

where zT C1 D .T C 1; aT C1� ; ŒRi
T �1 C log.1 C r i

T / � log.1 C r˛
T /�C/i2f0;1g.

This provides a straightforward way to compute prior-free optimal allocation
strategies.

Proposition 4.2 (Bellman formulation) Let z0 D .0; a0; 0; 0/. The following
hold.

(i) min˛ maxi2f0;1g �i
ND i

N .˛/ D W�.z0/. Drawdown minimizing policy ˛�
�

depends only on states .zt /t>0 and is defined by

˛�
�.zt / 2 arg min

at 2A

max
rt 2M

W�.ztC1/ for all zt :

(ii) The Pareto frontier of worst-case drawdowns is described by

� D
��

1

�i

W�.z0/

�
i2f0;1g

for � 2 �.f0; 1g/
�

: (4.3)

Figure 3 represents the Pareto frontier of minimal drawdowns for moves of nature
M D f0g � f�0:02; �0:01; 0; 0:01; 0:02g and time horizon N D 260 (ie, five years,
each period corresponding to a week), computed using the algorithm laid out in
Proposition 4.2. Each direction � 2 f.0:5; 0:5/; .0:55; 0:45/; .0:6; 0:4/g maps to the
prior-free optimal allocation strategy ˛� such that �0

NDN
0 .˛/ D �1

NDN
1 .˛/.

The frontier is convex and sits well to the south-west of the line segment between
extreme points corresponding to � D .0; 1/ and � D .1; 0/. This suggests that it is
possible to find attractive trade-offs between fear-of-loss and fear-of-missing-out.

Computing the worst-case drawdowns of arbitrary strategies

This paper focuses on strategies minimizing worst-case drawdowns; however, worst-
case drawdowns need not be the only criterion on which allocation strategies are
evaluated. In that case, the Pareto frontier � characterized by Proposition 4.2 remains
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16 S. Chassang

FIGURE 3 The drawdown frontier, � 2 f.0:5; 0:5/; .0:55; 0:45/; .0:6; 0:4/g, N D 260
(weeks), M D f0g � f�0:02; �0:01; 0; 0:01; 0:02g.

0
0 0.15

0.15

0.10

0.10

0.05

0.05

λ = (0.5,0.5)
λ = (0.55,0.45)

λ = (0.6,0.4)

D 1
 /5

: a
nn

ua
liz

ed
 w

or
st

-c
as

e 
dr

aw
do

w
n

ve
rs

us
 r

is
ky

 a
ss

et
 (

F
O

M
O

)

D0 /5: annualized worst-case drawdown
versus safe asset (FOL)

FOMO: fear of missing out. FOL: fear of losing.

useful as a benchmark to evaluate the robustness of alternative strategies that are
attractive according to other criteria (eg, in sample performance).

To do this, it is necessary to compute the worst-case drawdowns of arbitrary alterna-
tive strategies. Corollary 4.3 (below) shows that the Bellman approach remains useful
in this case. Consider an asset allocation strategy defined by an automaton .˛; �/ over
some state space Z. For each i 2 f0; 1g, define state xi

t D .t; at� ; zt ; R
i
t�1/ and

introduce the value function V i
˛ over states xi recursively defined as follows:

V i
˛ .xi

T / D
(

Ri
T �1 if T D N C 1;

maxr2M V˛.xi
T C1/ if T 6 N:

(4.4)

Corollary 4.3 For any i 2 f0; 1g, let xi
0 D .0; a0; z0; 0/. We have that ND i

N .˛/ D
V i

˛ .xi
0/.

Of course, this Bellman representation is only useful if state space Z has small
dimensionality. When strategy ˛ depends on a large state space (which can be the
case for strategies depending on truncated moving averages), worst-case drawdowns
should be evaluated using Monte Carlo or genetic algorithms approaches designed
for high-dimensional numerical optimization (Glasserman 2003; Golberg 1989).
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5 QUALITATIVE PROPERTIES

Proposition 4.2 provides a computational method to characterize drawdown mini-
mizing policies for arbitrary trading costs and arbitrary moves of nature M . It is
instructive to derive qualitative properties of prior-free optimal allocation strate-
gies under the simplifying assumption that trading costs c are equal to 0, and that
M D f0g � f�Nr; 0; Nrg.

We first note that prior-free optimal strategies are admissible. Recall that ˛� denotes
the solution to the original maximum–minimum problem (P�).

Proposition 5.1 (Admissibility) For every � 2 �.f0; 1g/, there exists a prior
�� 2 �.M N C1/ such that

˛� 2 arg max
˛2A

E��

� NX
tD0

log.1 C r˛
t /

�
:

In other words, there always exists a prior over returns for which a prior-free optimal
strategy is also Bayesian optimal. Of course, as was emphasized in Sections 2 and 3,
the difficulty is coming up with such a prior. The thesis defended by this paper is that
expressing preferences over the properties of allocation strategies directly (here, low
drawdowns) is consistent with the revealed preference approach, and a practical way
to approach dynamic asset allocation.

What prior over moves of nature rationalizes prior-free optimal strategies can be
further understood by taking a game-theoretic perspective. Note that, since trading
costs are equal to 0, allocation at is no longer a state variable. Abusing notation,
zt � .t; Ri

t /i2f0;1g is now a sufficient state. For any zt , a, r , define the payoff
function

U�.zt ; a; r/ � W�.ztC1/;

where ztC1 D .t C 1; ŒRi
t�1 C log.1 C r i / � log.1 C ra/�C/i2f0;1g.

Lemma 5.2

(i) Payoff function U�.zt ; a; r/ is convex in a.

(ii) Optimal allocation ˛�.zt / is a Nash equilibrium strategy in the zero-sum game
against nature, with actions .a; r/ and payoffs �U�.zt ; a; r/ to the investor.

(iii) The drawdown frontier � W D0 7! �.D0/ is convex in D0.

The investor plays a stochastic zero-sum game against nature, and prior-free opti-
mal allocation strategies are Nash equilibriums of this game. This game-theoretic
interpretation is helpful in characterizing optimal policies.
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5.1 A game-theoretic characterization

Explicit characterization for T D N

Solving for the optimal policy in period T D N helps delineate the mechanics of
optimal drawdown control. Note that since returns to the safe asset r0 are equal to 0,
nature’s only choice is to pick returns to the risky asset r1 2 f�Nr; 0; Nrg.

At T D N , for regrets R0; R1, the investor picks the allocation a� D .a�;0; a�;1/,
solving

min
a12Œ0;1�

max
r12f�Nr;0; Nrg

fŒR0 � log.1 C a1r1/�C; ŒR1 C log.1 C r1/ � log.1 C a1r1/�Cg:

Lemma 5.3

(i) Whenever R0 � R1 2 .log.1 � Nr/; log.1 C Nr//, the optimal allocation a� is
strictly interior, ie, a1;� 2 .0; 1/.

(ii) If R0 � R1 > log.1 C Nr/, the optimal allocation is a1;� D 0. If R0 � R1 6
log.1 � Nr/, the optimal allocation is a1;� D 1.

Proof Point (ii) is immediate. Whenever R0 �R1 6 log.1� Nr/, for any allocation
a1 2 .0; 1/ and r 2 M , R1 C log.1 C r1/ � log.1 C a1r1/ > R0 � log.1 C a1r1/,
which implies that the optimal allocation a1 minimizes maxr R1 C log.1 C r1/ �
log.1 C a1r1/, ie, a1;� D 1. A similar reasoning holds when R0 � R1 > log.1 C Nr/.

Point (i) exploits the fact that optimal allocation a� is a Nash equilibrium in the
zero-sum game against nature with payoffs �U.zt ; a; r/. Hence, it is sufficient to
show that neither a1;� D 0 nor a1;� D 1 can be part of a Nash equilibrium. Indeed, if
a1;� D 0, then, since R0 �R1 2 .log.1� Nr/; log.1C Nr//, nature’s strict best response
is to set r D r . This yields worst-case regrets R1Clog.1C Nr/�log.1Ca1 Nr/, inducing
best response a1;� > 0 from the investor. A similar reasoning shows that a1;� D 1

cannot be part of an equilibrium either. This implies that the only equilibrium is in
mixed strategies. �

An immediate corollary is that whenever R0 � R1 … .log.1 � Nr/; log.1 C Nr//,
W.zN / D maxfR0; R1g. When R0 � R1 2 .log.1 � Nr/; log.1 C Nr//, since a1;� 2
.0; 1/, it is strictly optimal for nature to pick returns in f�Nr; Nrg, which implies that
W.zN / > maxfR0; R1g. Further, nature must be indifferent to whether �Nr or Nr is
picked (otherwise, the investor would not use an interior strategy). This implies that
an optimal allocation a� must satisfy

R0 � log.1 � a1;� Nr/ D R1 C log.1 C Nr/ � log.1 C a1;� Nr/

() a1;� D 1

Nr � .1 C Nr/ exp.R1 � R0/ � 1

.1 C Nr/ exp.R1 � R0/ C 1
: (5.1)

Journal of Risk www.risk.net/journals



Mostly prior-free asset allocation 19

This yields the value function

WN .R0; R1/

D

8̂<
:̂

maxfR0; R1g if R0 � R1 … .log.1 � Nr/; log.1 C Nr//;

logŒ.1 C Nr/ exp R1 C exp R0�

� log 2 otherwise:

Characterization for T < N

Lemma 5.3 extends as follows. Define „0 D � log.1 � Nr/ and „1 D log.1 C Nr/.

Proposition 5.4 For all t 2 f0; : : : ; N g, � 2 �.f0; 1g/, ˛�.R0; R1; t / is
continuous in .R0; R1/. Further, for all i 2 f0; 1g,

(i) if �iR
i > ��i ŒR

�i C .N � t /„i �, then ˛i
�
.Ri ; R�i ; t / D 1;

(ii) if �iR
i � ��iR

�i 2 .�.N � t /„�i ; .N � t /„i /, then ˛i
�
.Ri ; R�i ; t / 2 .0; 1/,

and

U�.zt ; ˛.zt /; Nr/ D U�.zt ; ˛.zt /; �Nr/: (5.2)

Lemma 5.3 and Proposition 5.4 have substantial implications.

5.2 Qualitative implications

Interior allocations

As Black and Litterman (1992) emphasize, naive implementations of the Markowitz
(1952) approach to portfolio allocation frequently generate extreme corner alloca-
tions. One possible fix is to place ad hoc constraints on allocations. Alternatively,
Black and Litterman (1992) suggest anchoring priors to benchmark priors constrained
to justify holding the market portfolio. An immediate corollary of Proposition 5.4 is
that the prior-free approach naturally leads to noncorner solutions, without the help
of ad hoc side constraints.

Corollary 5.5 For all � 2 �.f0; 1g/, there exists 	 > 0 such that, for all N and
all sequences of returns r ,

1

N C 1

NX
tD0

1˛�;N .zt /2.0;1/2 > 1 � 	
1p

N C 1
:

In other words, for any realization of returns, prior-free optimal allocations are
interior for a share of periods asymptotically equal to 1.
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Momentum

An influential literature documents the profitability of momentum strategies that buy
recent overperforming stocks, while selling recent underperforming stocks (Asness
et al 2013; Barberis et al 1998; Hong and Stein 1999; Hong et al 2000; Jegadeesh and
Titman 1993, 2001; Moskowitz et al 2012), and proposes behavioral explanations for
this apparent departure from the efficient market hypothesis.

Even though prior-free optimal strategies are not calibrated using historical data,
they, too, exhibit momentum. This reflects the fact that they attempt to optimize asset
allocation in arbitrarily nonstationary environments. Returns need not go back to the
mean, and momentum emerges as a response to the fact that one asset may well keep
performing better than another. Formally, the following result holds.

Corollary 5.6 Let T1 D b
1N c < b
2N c D T2, with 
1; 
2 fixed.4 For any
� > 0, consider a probability measure � over .r1

t /t2fT1;T1C1;:::;T2g such that, for all
t 2 fT1; : : : ; T2g,

E�

�
r1

t

1 C r1
t

ˇ̌̌
ˇ ht

�
> �:

Then,

�-almost surely; lim
N !C1

1

T2 � T1

T2X
tDT1

˛1
�;N .ht / D 1:

The condition E�Œr1
t =.1 C r1

t / j ht � > � – expected returns weighed by marginal
utility are sufficiently high – implies that a history ht allocating all wealth to the risky
asset yields strictly higher expected log returns than any other allocation in �.f0; 1g/.

Corollary 5.6 states that if the returns from the risky asset are drawn from a distribu-
tion with sufficiently positive mean over the time interval ŒT1; T2�, then the allocation
to the risky asset must go to one. A converse holds if the returns to the risky asset are
drawn from a distribution with sufficiently negative mean. Note that to be compati-
ble with Corollary 5.5, Corollary 5.6 requires the allocation to converge to a corner
allocation from the interior.

History dependence

Another notable property of prior-free optimal allocation strategies is that even
though log preferences do not exhibit a wealth effect, past investment experience
affects investors’ continuation behavior. Investors investing in the same period who
have experienced different histories of returns will choose different allocations. This
is because drawdown minimization is a reference-dependent objective, with the
reference point being dependent on an investor’s personal history.

4 As usual, bxc denotes the integer part of x, defined as bxc D maxfn 2 N j n 6 xg.
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This can be illustrated with a simple example. Consider a two-period investment
problem, with time denoted by t 2 f0; 1g. A young investor is born in period 1, and an
old investor is born in period 0. Both investors share the same preference parameter
� D .0:5; 0:5/ and the magnitude of potential returns is Nr D 0:02. Expression (5.1)
implies that the young investor will allocate 49.5% of their wealth to the risky asset.
The allocation of the old investor depends on their experience at time t D 0. We know
by Proposition 5.4 that the latter must have chosen an interior allocation in period
t D 0. If the risky asset yielded returns r1

0 D �Nr , they experienced drawdowns
against the safe asset, and by (5.1) must place a weight strictly less than 49:5% on
the risky asset. Inversely, if the risky asset yielded returns r1

0 D Nr , they experienced
drawdowns against the risky asset, and by (5.1) must place a weight strictly higher
than 49:5% on the risky asset.

This property echoes the finding of Malmendier and Nagel (2011) that investors
exhibit heterogeneous risk preferences as a function of their personal histories. Specif-
ically, they show that poor realized returns make investors significantly more risk
averse, in a way that is not quantitatively explained by wealth effects.

6 MULTI-ASSET ALLOCATION

So far the analysis has focused on allocating resources to a single risky asset. This
section extends the prior-free approach to several risky assets. Along the way, it
suggests a reinterpretation of drawdowns as optimality conditions.

Framework

Consider an environment with several risky assets i 2 I D f1; : : : ; I g and a sin-
gle risk-free asset denoted by 0. For simplicity, trading costs are set to zero. Let
aI

t D .ai
t /i2I and a0

t , respectively, denote allocations to the risky and risk-free assets
at time t . Allocations aI to risky assets must belong to the product set A D Q

i2I Ai ,
with Ai D Œai ; Nai �. In addition, total allocation weights must sum to 1, so that
a0 D 1 � P

i2I ai . Note that short selling is implicitly allowed. The overall allo-
cation is denoted by a D .a0; aI/. For simplicity, returns r0 > 0 to the risk-free asset
are constant over time. Risky returns rI D .r i /i2I belong to a set M I of moves of
nature taking the form M I D Q

i2I M i � .�r; Nr/I, with Nr 2 .0; 1/. Let r D .r0; rI/.
Consider now the problem of a Bayesian investor maximizing their subjective

expected utility. In each period t , the investor chooses the allocation aI
t that solves

max
aI2A

EŒlog.1 C hrt ; ai/ j Ft �; (6.1)

where Ft denotes the investor’s information set at t . Take as given � > 0. For
� 2 f�; Cg and any allocation a, denote by �C.a; i/ and ��.a; i/ allocations identical
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to a except that the i th coordinate is shifted up or down by an amount �. Under
the paper’s notation, �� .a; i/j denotes the weight assigned to asset j by allocation
�� .a; i/. Formally, we have that

�C.a; i/i D ai;C � minfai C �; Naig and, for all j 2 I n i; �C.a; i/j D aj ;

��.a; i/i D ai;� � maxfai � �; aig and, for all j 2 I n i; ��.a; i/j D aj :

By definition, for any T 0 6 T 6 N , solutions .a�
t /t2fT 0;:::;T g to (6.1) cannot be

improved by shifting the allocation in any direction. As a result, for all i 2 I, under
the investor’s prior,

TX
tDT 0

EŒlog.1 C hrt ; �C.a�
t ; i/i/jFt � � EŒlog.1 C hrt ; a�

t i/ j Ft � 6 0; (6.2)

TX
tDT 0

EŒlog.1 C hrt ; ��.a�
t ; i/i/jFt � � EŒlog.1 C hrt ; a�

t i/ j Ft � 6 0: (6.3)

Using finite sample versions of the central limit theorem, this implies that when returns
are drawn from the investor’s prior, then, with probability approaching 1 for N large,
for all T 0 6 T 6 N ,5

TX
tDT 0

log.1 C hrt ; �C.a�
t ; i/i/ � log.1 C hrt ; a�

t i/ 6 O.
p

N /

and
TX

tDT 0

log.1 C hrt ; ��.a�
t ; i/i/ � log.1 C hrt ; a�

t i/ 6 O.
p

N /:

Define drawdowns D i;C
N and D i;�

N as

D i;C
N D max

T 06T 6N

TX
tDT 0

log.1 C hrt ; �C.a�
t ; i/i/ � log.1 C hrt ; a�

t i/;

D i;�
N D max

T 06T 6N

TX
tDT 0

log.1 C hrt ; ��.a�
t ; i/i/ � log.1 C hrt ; a�

t i/:

These drawdowns capture maximal losses relative to strategies that systematically
increase or decrease their exposure to a specific asset. Keeping these drawdowns low
is a sample expression of the optimality conditions (6.2) and (6.3).

5 Specifically, the Hoeffding–Azuma inequality. See Cesa-Bianchi and Lugosi (2006, Lemma A.7)
for a reference.
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Note that the optimality conditions being tested depend on the step of the deviation
�. Indeed, the drawdowns studied in Sections 2 to 5 correspond to setting � D 1,
ai D 0 and Nai D 1. In that case, the drawdowns D0

N and D1
N of Sections 2–5 satisfy

D0
N D D1;�

N and D1
N D D1;C

N . Smaller steps �, correspond to more local deviations,
and potentially allow for finer optimization. For any asset allocation strategy ˛ 2 A,
mapping public histories to allocations, define maximum drawdowns as follows:

ND i;�
N .˛/ D max

r2M N C1
D i;�

N .˛; r/ for all i 2 I; � 2 fC; �g:

Take as given a deviation step � > 0, and let 
 be the set of weights � D .�C; ��/

such that �C C �� D 1.6

Definition 6.1 (Prior-free allocation strategies) A dynamic asset allocation strat-
egy ˛ 2 A is prior-free optimal if there exists � 2 
 such that ˛ solves

min
˛2A

max
i2I

max
�2f�;Cg

�� ND i;�
N .˛/: (P I

�
)

Computation and key properties

The remainder of this section clarifies difficulties in finding numerical solutions
to (P I

�
) and identifies an approximately optimal class of strategies amenable to

numerical computation and theoretical analysis.
For all T 6 N , let

Ri;�
T .˛; r/ � max

T 06T

TX
tDT 0

log.1 C hrt ; �� .a�
t ; i/i/ � log.1 C hrt ; a�

t i/:

An argument identical to that of Lemma 4.1 implies that, for all ˛ 2 A,

ND i;�
N .˛/ D R

i;�

N .˛/;

Ri;�
T C1 D maxf0; Ri;�

T C log.1 C hrT C1; �� .˛T C1; i/i/
� log.1 C hrT C1; ˛T C1i/g:

Since there are no trading costs, current allocations are not a state variable in
(P I

�
). An argument identical to that of Proposition 4.2 implies that optimal asset

allocation policies ˛ are a function of state zt D .t; Ri;C
t ; Ri;�

t /i2I. Unfortunately,
the problem of picking an optimal allocation ˛I over risk-assets cannot be separated
in I independent problems. The returns r�i of assets other than i affect the optimal
allocation to asset i . This implies that (P I

�
) becomes numerically intractable as the

number I of risky assets becomes large.

6 Weights �� could also be indexed on i .
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Fortunately, a relaxed problem admits computationally tractable solutions that are
approximate solutions to (P I

�
). For any i , let

M :i D
� X

j 2Ini

aj .rj � r0/

ˇ̌̌
ˇ aI 2 A; rI 2 M

�
:

M :i is the set of possible returns differentials due to allocations to assets other than
i .

Recall the notation ai;C D minfai C �; Naig and ai;� D maxfai � �; Naig. For all
ai 2 Œai ; Nai �, r i 2 M i , r:i 2 M :i , define

g� .ai ; r i ; r:i / � log.1Cai;�r i C.1�ai;� /r0�r:i /�log.1Cair i C.1�ai /r0�r:i /:

For any i 2 I,

Ri;�
T .˛; r/ D max

T 06T

TX
tDT 0

g� .˛i
t ; r i

t ; r:i
t / with r:i

t D
X

j 2Ini

˛
j
t .r

j
t � r0/:

In (P I
�

), returns r:i are not freely chosen by nature. They are jointly determined
by the allocation aI and returns rI. The relaxed problem increases nature’s degrees
of freedom by allowing it to independently pick .r i /i2I and .r:i /i2I. Denote by r i

and r:i sequences .r i
t /t2f0;��� ;N g, .r:i

t /t2f0;��� ;N g. For any strategy ˛i 2 Ai , mapping
histories to the weight assigned to asset i , let

NGi;�
N .˛i / � max

ri ;r:i
max

T 06T 6N

TX
tDT 0

g� .˛i
t ; r i

t ; r:i
t /:

Let ˛
�;i
N denote a solution to

min
˛i 2Ai

max
�2f�;Cg

�� NGi;�
N .˛/: ( OP i

�
)

This problem is associated with states zi
t D .t; Ri;C

t ; Ri;�/ and the value function

W i
�i

.zi
T / D

(
max�2fC;�g ��Ri;�

T if T D N C 1;

minai
T

2Ai maxri 2M i maxr:i 2M :i W i
�

.zi
T C1/ if T 6 N:

(6.4)

Proposition 6.2 The following hold:

(i) ND i;�
N .˛/ 6 NGi;�

N .˛i / for all ˛ 2 A;

(ii) �� NGi;�
N .˛

�;i
N / D O.

p
N / for all i 2 I and � 2 fC; �g;
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(iii) ˛
�;i
N depends only on states zi

t , and ˛
�;i
N .zi

t / solves

min
ai 2Ai

max
ri 2M i

max
r:i 2M :i

W i
�i

.zi
tC1/:

In other words, solutions to ( OP i
�

) are easily computable and provide an approximate
solution to ( OP i

�
). The fact that drawdowns are sublinear in N implies the following

extension of Corollary 5.6.
Let T1 D b
1N c < b
2N c D T2, with 
1; 
2 fixed. Assume that for t 2

fT1; : : : ; T2g returns rt are iid with a distribution �. Further, assume that for all
i 2 I there exists �i 2 fC1; �1g such that

�iE�

�
r i � r0

1 C ha; ri
�

> 0 for all aI 2 A; (6.5)

where a D .a0; aI/. This implies that problem maxaI2A E�Œlog.1 C ha; ri/� has a
unique corner solution a�;I 2 Q

i2Ifai ; Naig.

Corollary 6.3 If (6.5) holds, then prior-free optimal strategy ˛
�;i
N satisfies, for

all i 2 I,

�-almost surely; lim
N !C1

1

T2 � T1

T2X
tDT1

˛
�;i
N .ht / D a�;i :

In other words, the prior-free optimal strategy must approach the Bayesian optimal
allocation when it takes extreme values. It is worth noting that Corollary 6.3 holds
regardless of the history of returns occurring before time T1. Even after long histories,
prior-free optimal allocation strategies do not become doctrinaire. They adapt to new
circumstances.

Corollary 6.3 also clarifies that although (P I
�

) and ( OP i
�

) let nature pick returns
for each asset independently, the resulting strategies respond to correlation between
assets. For instance, if one asset is redundant because it is highly correlated to another
asset with higher returns, then prior-free asset allocation strategies (relaxed or not)
will assign minimal weight to this asset.

7 PRACTICAL EVALUATION

This section evaluates the behavior of prior-free optimal asset allocation against two
benchmark risk management strategies (applied to the risk-free asset and a single
risky asset):

� the first is the simple 1=n benchmark, whose out-of-sample robustness is
emphasized in DeMiguel et al (2009);
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� the second is CPPI (Black and Perold 1992).

The 1=n solution is implemented as a quarterly rebalanced portfolio, targeting a
50/50 fixed-weight allocation between the safe and risky assets.7 CPPI is an especially
relevant benchmark since its goal is to provide prior-free performance guarantees. The
version of CPPI tested in this section takes the following form: the investor tracks
their counterfactual wealth Owt as if they invested only in the safe asset; a share of
their actual wealth wt equal to 75% of their counterfactual wealth Owt is invested in
the safe asset. The remaining cushion wt � 0:75 Owt is leveraged once and invested in
the risky asset. If the price process is continuous and rebalancings occur frequently
enough, CPPI guarantees the investor 75% of their wealth if they invested in the safe
asset, while also providing exposure to the risky asset.

7.1 Worst-case performance

Figure 4 plots the worst-case drawdowns of both the fixed-weight portfolio and the
CPPI portfolio against the prior-free efficient frontier in the case where a period
corresponds to a week, N D 260, and M D f0g � f�0:02; �0:01; 0; 0:01; 0:02g and
the trading cost c is equal to 20bps.

Mechanically, both the fixed-weight portfolio and CPPI must sit to the north-east
of the efficient frontier. In fact, they sit quite far away from the efficient frontier.

The reason why the fixed-weight portfolio can experience large drawdowns is clear.
It keeps the allocation close to 50/50, even if the risky asset keeps yielding positive
(or negative) returns.

A more surprising finding is that CPPI can also experience large drawdowns, even
though it is designed to provide performance guarantees. As Figure 5 illustrates,
CPPI experiences drawdowns against the safe asset if the risky asset experiences
large gains followed by equally large losses. Indeed, after large gains, CPPI will
keep a large exposure to the risky asset until those gains are lost. Inversely, CPPI
experiences large drawdowns versus the risky asset if large losses are followed by
equally large gains. Indeed, if cumulated losses over a large number of periods make
CPPI approach the 75% mark, CPPI will then limit its holding of the risky asset for a
commensurate number of periods, resulting in large drawdowns versus the risky asset
during the rebound.

7 Here, the 1=n strategy serves as the simplest possible benchmark, similar to a popular 60/40
allocation. The robustness of the 1=n approach, as documented by DeMiguel et al (2009), is partic-
ularly important when the number of assets becomes large, since in that case the correlation matrix
between assets becomes near singular. The current paper makes no empirical claim regarding such
many-assets allocation problems.
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FIGURE 4 Worst-case drawdowns for prior-free efficient, fixed-weight and CPPI strategies.
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FIGURE 5 Returns generating high drawdowns for the CPPI strategy.
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7.2 Historical performance

If market returns were iid, prior-free optimal strategies could not possibly improve
on the performance of a fixed-weight allocation. However, if risk premiums exhibit
significant variation, prior-free optimal strategies may outperform fixed-weight
strategies. Whether this is the case is an empirical question.

Table 1 reports findings from running the fixed-weight, CPPI and prior-free optimal
strategies defined above on a sample of market and risk-free returns from January 1,
1927 to December 31, 2014, obtained from Kenneth French’s data library. Each
strategy is implemented over rolling periods of five years, starting on January 1 for
each of the eighty-eight years in the sample. Trading costs are set to 20bps.

Denoting by OE expectations under the empirical sample of daily returns, the
following statistics are reported (counting 252 trading days in a year).

� Net annualized performance: net performance D 252 � OEŒr˛
t � r0

t �.

� Annualized Sharpe ratios:

Sharpe �
OEŒr˛ � r0�q
OEŒ.r˛ � r0/2�

p
252:

� Worst-case five-year relative drawdowns D0, D1 versus the safe and risky asset
over the entire period.

� Net performance-to-drawdown ratio:

net performance-to-drawdown � net performance

D0

: (7.1)

� Parameters ˛ and ˇ from capital asset pricing model regression:

r˛ � r0 � ˛ C ˇ.r1 � r0/ C "; (7.2)

estimated using annualized returns (N D 88), and reporting robust standard
errors.

The net performance-to-drawdown ratio defined in (7.1) summarizes each strategy’s
ability to capture upside while reducing drawdowns.

The main finding is that instead of reducing in-sample performance, prior-free
optimal strategies improve the Sharpe ratio, the performance ratio and especially
the performance-to-drawdown ratio of the underlying portfolios. Prior-free asset
allocation strategies successfully capture time-varying risk premiums.

Figure 6 reports the cumulative log returns of being long the prior-free portfolio
and short the fixed-weight portfolio. The dotted lines separate the sample period
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TABLE 1 In-sample performance of fixed-weight, CPPI and prior-free optimal strategies,
1927–2014, N D 88.

Fixed
weights CPPI Prior free

Net performance 3.7% 4.7% 6.2%

Sharpe 0.45 0.48 0.56

D0 0.54 0.37 0.29

D1 0.44 0.53 0.37

Net performance 0.07 0.12 0.21
to drawdown

˛ 0.000 0.004 0.014���
(0.001) (0.005) (0.006)

ˇ 0.49��� 0.56��� 0.62���
(0.003) (0.024) (0.027)

�, �� and ��� respectively denote effects significant at the 0.1, 0.05 and 0.01 levels; standard errors are given in
parentheses.

into periods of about thirty years: 1927–57, 1957–87 and 1987–2014. The prior-
free optimal portfolio overperforms in each subsample, particularly in the 1927–57
sample, where large swings in returns make drawdown control especially valuable.
The long–short strategy’s Sharpe ratio over these three subsamples is, respectively,
0.54 (1927–57), 0.20 (1957–87) and 0.30 (1987–2014).

Figure 7 provides further insight into the circumstances in which the prior-free
optimal strategy improves on the fixed-weight portfolio. It plots the quantiles of the
distribution of returns under the prior-free portfolio against quantiles of the distribu-
tion of returns of the fixed-weight portfolio. The prior-free optimal strategy improves
both the left and the right tail of returns, but this comes at a cost for yearly returns in the
Œ�0:05; 0:05� range. This makes intuitive sense: in a range-bound market, the prior-
free optimal strategy shifts its allocation following small up and down movements.
These adjustments guarantee limited drawdowns in case a bull or bear market should
emerge. However, if the market remains range bound, this results in unnecessary
transaction costs.

Appendix A (available online) reports further empirical findings. First, a Henriks-
son and Merton (1981) market-timing regression shows that prior-free optimal asset
allocation strategies achieve asymmetric ˇ exposure to the market in good and bad
years (0:7 versus 0:4). Second, the prior-free allocation strategy improves on a strat-
egy that goes long the market and hedges large losses using put options. Third, the
main empirical findings are not sensitive to the choice of parameters used in setting
up the drawdown-control problem (P�).
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FIGURE 6 Excess log returns of prior-free optimal portfolio over fixed-weight strategy,
1927–2014.
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8 CONCLUSION

This paper provides a prior-free framework for asset allocation in arbitrarily nonsta-

tionary environments. The framework allows decision makers to express risk pref-

erences by trading off fear-of-loss (potential drawdowns against the safe asset) and

fear-of-missing-out (potential drawdowns against the risky asset). Prior-free optimal

allocation strategies are amenable to numerical computation, are largely interior and

satisfy a form of momentum. Finally, they are history dependent.

Practically, prior-free optimal strategies offer worst-case drawdown guarantees that

are a significant improvement on those offered by fixed-weight strategies or CPPI.

In addition, prior-free optimal strategies perform well in the sample of historical

returns, showing that the cost of robustness need not be prohibitive. This is encour-

aging evidence for a growing agenda that seeks to rethink economic design without

probabilistically sophisticated decision makers.

Appendix A (available online) presents some extensions. It reports additional infor-

mation on the behavior of prior-free optimal strategies in data, including robustness

checks. In addition, it provides a decision-theoretic perspective on the approach as

well as a discussion of how to extend the prior-free framework to include incomplete

probabilistic insights, ie, restrictions on the likelihood of aggregate events.
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FIGURE 7 Q–Q plot of yearly returns for the prior-free optimal and fixed-weight strategies,
1927–2014.
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