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ABSTRACT

Common ordinal models, including the ordered logit model and the continuation
ratio model, are formulated by a common score (ie, a linear combination of given
explanatory variables) plus rank-specific intercepts. Sensitivity to the common score
is generally not differentiated between rank outcomes. We propose an ordinal model
based on forward ordinal probabilities for rank outcomes. In addition to the common
score and intercepts, the forward ordinal probabilities are formulated by the rank-
and rating-specific sensitivity (for a risk-rated portfolio). This rank-specific sensitivity
allows a risk rating to respond to its migrations to default, downgrade, stay and upgrade
accordingly. A parameter estimation approach based on maximum likelihood for
observing rank-outcome frequencies is proposed. Applications of the proposed model
include modeling rating migration probability for point-in-time probability of default
term structure for International Financial Reporting Standard 9 expected credit loss
estimation and Comprehensive Capital Analysis and Review stress testing. Unlike the
rating transition model based on the Merton model, which allows only one sensitivity
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parameter for all rank outcomes for a rating and uses only systematic risk drivers,
the proposed forward ordinal model allows sensitivity to be differentiated between
outcomes, and to include entity-specific risk drivers (eg, the downgrade history or
credit quality changes for an entity in the previous two quarters can be included).
No additional estimation of the asset correlation is required. As an example, the
proposed model, benchmarked with the rating transition model based on the Merton
model, is used to estimate the probability of default term structure for a commercial
portfolio, where for each rating the sensitivities are differentiated between migrations
to default, downgrade, stay and upgrade. Our results show that the proposed model
is more robust.

Keywords: ordinal model; forward ordinal probability; common score; rank-specific sensitivity;
rating migration probability.

1 INTRODUCTION

Let R denote the outcome for a trial with exactly one of the ordinal outcome values
f1; 2; : : : ; kg. The forward (respectively, backward) ordinal probability, for a rank
value i , is the conditional probability that the outcome value is i , given that all
outcome ranks are no less (respectively, not larger) than i .

Common ordinal models, as reviewed in Section 2, include the ordered logit model
(ie, the proportion-odd model) and the continuation ratio model. For an ordered logit
model, the cumulative probabilities for rank outcomes are modeled by a common
score (ie, a linear combination of explanatory variables) together with a rank-specific
intercept. For a continuation ratio model, the forward or backward ordinal proba-
bilities for rank outcomes are also modeled by a common score with rank-specific
intercept. Sensitivities to the common score are generally not differentiated between
rank outcomes.

It is commonly observed that entities with high risk ratings are more sensitive, and
vulnerable to adverse shocks, and that entities are more likely to migrate to higher risk
grades than to lower risk ratings during downturns. Risk sensitivity is not generally
uniform between risk ratings or between outcome ranks.

We propose an ordinal model based on forward ordinal probability (model (3.2)
or (3.4); see Section 3). The forward ordinal probabilities are formulated by a com-
mon score plus rank-specific sensitivity and intercept. We propose an algorithm for
parameter estimation based on maximum likelihood for observing rank-outcome fre-
quencies. The model can be implemented easily by a modeler using, for example, the
SAS software procedure PROC NLMIXED (Wolfinger 2008).
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Applications of the proposed model include

(a) modeling the rating migration probability for Comprehensive Capital Analysis
and Review (CCAR) stress testing (Board of Governors of the Federal Reserve
System 2016) and the point-in-time probability of default (PD) term structure
for International Financial Reporting Standard 9 (IRFS 9) expected credit loss
estimation (Ankarath et al 2010);

(b) estimation of the PD for a low default portfolio, and shadow rating modeling.

The modeling of state transition probabilities dates back to the original Credit-
Metrics, CreditPortfolioView and CreditRisk+ credit portfolio approaches (Derbali
and Hallara 2013; Diaz and Gemmill 2002), and contributions by researchers includ-
ing Nyström and Skoglund (2006) and Wei (2003). The point-in-time rating transi-
tion probability model based on the Merton model (Gordy 2003; Merton 1974; Miu
and Ozdemir 2009; Vasicek 2002), which is formulated by a common credit index,
was proposed by Miu and Ozdemir (2009), and extended by Yang (2016) to facili-
tate rating-level sensitivity for CCAR stress testing and IFRS 9 expected credit loss
estimation.

Our proposed ordinal model, formulated by a common score plus an outcome
rank-specific sensitivity, has several advantages. The outcome rank-specific sensi-
tivity allows a risk rating to respond to its migrations to “default”, “downgrade”,
“stay” and “upgrade” accordingly. Monotonicity can be imposed for the sensitiv-
ity parameters between initial ratings for each type of migration. Under this model
structure, risk for an entity is driven by the common score (as a dynamic) plus the
sensitivity in responding to a scenario. Unlike the rating transition model (Yang 2016)
based on the Merton model framework, which allows only one sensitivity parameter
for all outcomes for a rating and uses only systematic risk drivers, our model can
include entity-specific risk drivers and allows for rank-specific sensitivity. No addi-
tional estimation for asset correlation is required. Further, the loglikelihood based
on the forward PD given by a cumulative distribution function is generally concave,
greatly increasing optimization efficiency.

Entity-specific drivers, such as downgrade history or credit quality changes in the
last two quarters, can help improve prediction and address the issue of the Markov
assumption for most migration models, particularly when the portfolio is small and
idiosyncratic risk cannot be diversified away.

The paper is organized as follows. In Section 2, we review two commonly used
ordinal regression models: the ordered logit model and the continuation ratio model. In
Section 3, we propose the forward ordinal model and show the loglikelihood function
and its concavity. A heuristic hard expectation maximization algorithm for parameter
estimation is proposed in Section 4. The model is validated and used in Section 5 to
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estimate the point-in-time PD structure for a commercial portfolio, where for each
rating the sensitivities are differentiated between migrations to default, downgrade,
stay and upgrade. The model is benchmarked using a rating transition model based
on the Merton model framework. Concluding remarks are given in Section 6.

2 A REVIEW OF ORDINAL REGRESSION MODELS

In this section we review two common ordinal models: ordinal regression and the
continuation ratio model.

Let R denote the outcome for a trial with exactly one of the ordinal outcome
values f1; 2; : : : ; kg. Given a scenario consisting of a list of explanatory variables
x1; x2; : : : ; xm, let x D .x1; x2; : : : ; xm/ denote the corresponding vector. Let Fi .x/
andpi .x/ denote, respectively, the cumulative and marginal probabilities defined by

Fi .x/ D P.R 6 i j x/;
pi .x/ D P.R D i j x/:

Given x and rank value i , the forward ordinal probability Qpi .x/ and the backward
ordinal probability Qpbi .x/ are defined by the following conditional probabilities,
respectively:

Qpi .x/ D P.R D i j x;R > i/; Qpbi .x/ D P.R D i j x;R 6 i/:

Remark 2.1 We can always model the backward ordinal probability via the for-
ward ordinal probability model: we simply reverse the order of the ordinal out-
comes and reindex the resulting forward ordinal probability Qpi .x/ by replacing i
with .kC 1� i/. Therefore, we focus only on the forward ordinal probability model;
all discussions for this model apply naturally to the backward ordinal model by an
appropriate reversion for the outcome order and the index of the forward probability.

Proposition 2.2 The following equations hold:

Fi .x/ D p1.x/C p2.x/C � � � C pi .x/; (2.1a)

Qpi .x/ D
pi .x/

1 � Fi�1.x/
; (2.1b)

pi .x/ D Fi .x/ � Fi�1.x/ D Œ1 � Fi�1.x/� Qpi .x/; (2.1c)

Œ1 � Fi .x/� D Œ1 � Qp1.x/�Œ1 � Qp2.x/� � � � Œ1 � Qpi .x/�: (2.1d)

Proof Equation (2.1a) is immediate. Equation (2.1b) follows from the Bayesian
theorem, while (2.1c) follows from (2.1a) and (2.1b). By (2.1c), we have

1 � Fi .x/ D Œ1 � Fi�1.x/� � pi .x/ D Œ1 � Fi�1.x/�Œ1 � Qpi .x/�:

Thus, (2.1d) follows by induction. �
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For the largest rank outcome k, we have

Fk.x/ D 1; Qpk.x/ D 1;

pk.x/ D 1 � Œp1.x/C p2.x/C � � � C pk�1.x/�:

Therefore, by Proposition 2.2, an ordinal model can be chosen to model one of the
following components:

(i) the cumulative probabilities fFi .x/ j i D 1; 2; : : : ; k � 1g;

(ii) the marginal probabilities fpi .x/ j i D 1; 2; : : : ; k � 1g;

(iii) the forward ordinal probabilities f Qpi .x/ j i D 1; 2; : : : ; k � 1g.

Marginal probabilities are subject to the following constraints:

p1.x/C p2.x/C � � � C pi .x/ 6 1; p1.x/C p2.x/C � � � C pk.x/ D 1:

Therefore, modeling marginal probabilities individually introduces additional com-
plexity. In general, we can choose to model either the cumulative probabilities or the
forward ordinal probabilities, as reviewed and discussed below.

2.1 Ordinal regression models

An ordinal regression model is generally formulated by cumulative probabilities
fFi .x/ j i D 1; 2; : : : ; k � 1g as

Fi .x/ D F.bi C a1x1 C a2x2 C � � � C amxm/; b1 6 b2 6 � � � 6 bk�1; (2.2)

where F denotes the cumulative distribution for a probability distribution. The
coefficients a1; a2; : : : ; am in model (2.2) do not depend on index i 6 k � 1.

As they are cumulative probabilities, fFi .x/ j i D 1; 2; : : : ; k � 1g are required to
satisfy the following condition:

F1.x/ 6 F2.x/ 6 � � � 6 Fk�1.x/: (2.3)

This is guaranteed for the ordinal regression model by the constraint b1 6 b2 6
� � � 6 bk�1 in (2.2). When modeling the cumulative probabilities, condition (2.3)
implies the coefficients a1; a2; : : : ; am in (2.2) must be the same for all rank outcomes
fi D 1; 2; : : : ; k� 1g, a limitation of choosing to model the cumulative probabilities.

Recall that, given a sample with n independent trials, where each trial results in
exactly one of k rank outcomes, the probability of observing frequencies fnig, with
frequency ni for the i th outcome, is

nŠ

n1Šn2Š � � �nkŠ
p
n1
1 p

n2
2 � � �p

nk
k
; n D n1 C n2 C � � � C nk;
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where pi D pi .x/ is the marginal probability for rank outcome i , which can be
derived from the cumulative probabilities given in (2.2). Therefore, the parameters
for model (2.2) can be estimated by using the maximum likelihood approaches, given
a sample for the observed rank-outcome frequencies.

The proportion-odd (or ordered logistic regression) model, a commonly used
ordinal model, is given by

log

�
P.R 6 i j x/
P.R > i j x/

�
D bi C a1x1 C a2x2 C � � � C amxm

H) Fi .x/ D P.R 6 i j x/

D
1

1C exp.�bi � a1x1 � a2x2 � � � � � amxm/

D F.bi C a1x1 C a2x2 C � � � C amxm/;

where F.x/ D 1=.1 C exp.�x// is the standard logistic cumulative probability
distribution. Thus, the proportion-odd model is a special case of the ordinal regres-
sion model (2.2), with the link function given by the inverse of the standard logistic
cumulative distribution, ie, the logit function.

Ordinal regression models are implemented by SAS, with options for different link
functions, including the inverse of standard logistic and the inverse of standard normal
cumulative distributions (ie, the logit and probit functions).

2.2 Forward/backward continuation ratio model

Recall that the logit function is defined as logit.p/ D logŒp=.1 � p/� for 0 < p <

1. Given scenario x and rank-outcome value i , the forward and backward logistic
continuation ratio models, respectively, are formulated as

logit

�
P.R D i j x/

P.R > i j x/

�
D bi C a1x1 C a2x2 C � � � C amxm; (2.4a)

logit

�
P.R D i j x/

P.R 6 i j x/

�
D bi C a1x1 C a2x2 C � � � C amxm: (2.4b)

The coefficientsa1; a2; : : : ; am do not depend on index i 6 k�1. Let Qpi .x/ denote the
forward ordinal probabilityP.R D i j x;R > i/ or the backward ordinal probability
P.R D i j x;R 6 i/. Then we can reformulate (2.4a) and (2.4b) as

Qpi .x/ D
1

1C exp.bi C a1x1 C a2x2 C � � � C amxm/

D ˚.bi C a1x1 C a2x2 C � � � C amxm/; (2.5)

where ˚ denotes standard logistic cumulative distribution. This means the logistic
forward continuation ratio model is formulated by the forward ordinal probabilities
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for rank outcomes, with the inverse of the standard logistic cumulative distribution,
ie, the logit function, as the link function. The probit continuation ratio model can be
formulated similarly using the inverse of the standard normal cumulative distribution
(ie, the probit function) as the link function.

3 THE PROPOSED FORWARD ORDINAL MODEL

With ordinal regression model (2.2) and continuation ratio models (2.4a) and (2.4b),
the sensitivities for all the rank outcomes are the same, though the intercept can differ
between rank outcomes. In this section we propose an ordinal model based on forward
ordinal probabilities. This forward ordinal model allows the sensitivities of the rank
outcomes to be differentiated.

3.1 The mathematical setup

We assume, given the rank outcome will not be less than i , ie, R > i , that there is a
latent variable yi given by

yi D �bi � ri .a1x1 C a2x2 C � � � C amxm/C "i (3.1)

such thatR > i when yi > 0 andR D i if yi 6 0, where "i is a random variable with
zero mean, independent of x D .x1; x2; : : : ; xm/. The coefficients fa1; a2; : : : ; amg
do not depend on index i 6 k � 1.

By appropriate scaling of both sides of (3.1), we can assume the standard devia-
tion of "i is 1. We assume that "i is standard normal. Let ˚ denote the cumulative
distribution for "i . Then, by (3.1), the forward ordinal probability Qpi .x/ is

Qpi .x/ D ˚.bi C ri .a1x1 C a2x2 C � � � C amxm//: (3.2)

Let c.x/ D .a1x1 C a2x2 C � � � C amxm/. We call c.x/ a common score and ri the
sensitivity for the rank value i 6 k � 1 with respect to c.x/. For IFRS 9 expected
loss estimation and CCAR stress testing, c.x/ can include both systematic and entity-
specific risk drivers.

Note that, with model (3.2), an increase (respectively, decrease) in the norm of
the parameter vector .a1; a2; : : : ; am/ during parameter estimation can propagate to
the sensitivity parameter vector .r1; r2; : : : ; rk�1/ by scaling down (respectively, up).
To prevent unnecessary disturbance of parameter estimation and ensure estimation
convergence, the following constraints can be imposed:

a21 C a
2
2 C � � � C a

2
m D 1: (3.3a)

In practice, the sign of the coefficient ai is predetermined. For example, default risk
increases as unemployment rate increases. We thus require the unemployment rate
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coefficient in the model to be positive. In this case, we can assume that all faig are
nonnegative by an appropriate sign scaling to the corresponding variable. Then the
following linear constraint can be imposed:

a1 C a2 C � � � C am D 1: (3.3b)

Let c.x/ D .a1x1Ca2x2C� � �Camxm/. In the case when the variablesx1; x2; : : : ; xm
are common to all entities (eg, the macroeconomic variables), we obtain the following
model, assuming normality for c.x/ with mean u and standard deviation v:

Qpi .x/ D ˚.ci
p
1C .riv/2 C ri .a1x1 C a2x2 C � � � C amxm � u//; (3.4)

where ci is the threshold value estimated directly by taking the inverse, ˚�1, of the
long-run average for forward ordinal probability, which can be estimated directly
from the sample. Model (3.4) is derived from (3.2) by a well-known lemma (Rosen
and Saunders 2009) for the expectation with respect to s:

EsŒ˚.aC bs/� D ˚

�
a

p
1C b2

�
; s � N.0; 1/:

With model (3.4), estimation is required for parameters fa1; a2; : : : ; amg and frig, but
not the intercepts fbig.

3.2 The loglikelihood function given the observed rank frequencies

In this section we show the loglikelihood and its concavity for observing rank-outcome
frequencies by using the forward ordinal probabilities f Qpi .x/ j i D 1; 2; : : : ; kg.

Given a scenario x D .x1; x2; : : : ; xm/, let ni denote the corresponding observed
frequency for the i th rank value. Let

n D n1 C n2 C � � � C nk : (3.5a)

Define

si D n � .n1 C n2 C � � � C ni�1/ D nk C nk�1 C � � � C ni : (3.5b)

We focus on the conditional probability space given that the rank value of the outcome
R is not less than i . The loglikelihood of observing frequency ni for the i th rank value
and frequency si � ni for rank values larger than i , given x D .x1; x2; : : : ; xm/, is

Li .x/ D .si � ni / logŒ1 � Qpi .x/�C ni logŒ Qpi .x/� (3.6)

up to a summand given by the logarithm of a binomial coefficient, which is indepen-
dent of the model parameters of model (3.2) and (3.4), assuming the occurrence of
the i th rank value is a binary event.
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LetL.x; i; iCh/ denote the loglikelihood, over this probability space, of observing
multiple frequencies fni ; niC1; : : : ; niChg, for rank values fi; i C 1; : : : ; i C hg, and
the frequency siChC1 D nkCnk�1C� � �CniChC1 for rank values larger than iCh.
We have the following proposition.

Proposition 3.1 The equations

L.x; i; i C h/ D Li .x/C LiC1.x/C � � � C LiCh.x/; (3.7a)

L.x; 1; k/ D L1.x/C L2.x/C � � � C Lk.x/ (3.7b)

hold, up to a summand given by the logarithms of some binomial coefficients
(independent of the parameters in models (3.2) and (3.4)).

Proof We show only (3.7b); the proof for (3.7a) is similar. For simplicity, we
write Fi and Qpi , respectively, for Fi .x/ and Qpi .x/. The marginal probability of the
event fR D i j xg is .1 � Fi�1.x// Qpi .x/. Thus, the probability of observing a
frequencyni for the i th rank value is .1�Fi�1/ni Qp

ni
i up to a multiplicative factor given

by the binomial coefficient. Consequently, the probability of observing frequencies
fnigiD1;2;:::;k with ni for the i th rank value is

� D Qp
n1
1 Qp

n2
2 � � � Qp

nk
k
.1 � F1/

n2.1 � F2/
n3 � � � .1 � Fk�1/

nk (3.8)

up to a constant factor given by some binomial coefficients. By (2.1d), we have

.1 � F1/
n2.1 � F2/

n3 � � � .1 � Fk�1/
nk

D .1 � Qp1/
n2 Œ.1 � Qp1/.1 � Qp2/�

n3 � � � Œ.1 � Qp1/.1 � Qp2/ � � � .1 � Qpk�1/�
nk

D .1 � Qp1/
n2Cn3C���Cnk .1 � Qp2/

n3Cn4C���Cnk � � � .1 � Qpk�1/
nk

D .1 � Qp1/
s1�n1.1 � Qp2/

s2�n2 � � � .1 � Qpk�1/
sk�1�nk�1 : (3.9)

This follows from (3.5b). Thus, by (3.8), we have the corresponding loglikelihood:

log� D Œn1 log. Qp1/C .s1 � n1/ log.1 � Qp1/�

C Œn2 log. Qp2/C .s2 � n2/ log.1 � Qp2/�C � � � C Œnk log. Qpk/�

D Œn1 log. Qp1/C .s1 � n1/ log.1 � Qp1/�

C Œn2 log. Qp2/C .s2 � nn2/ log.1 � Qp2/�C � � �

C Œnk log. Qpk/C .sk � nk/ log.1 � Qpk/�

D L1.x/C L2.x/C � � � C Lk.x/; (3.10)

where the second equality follows from the fact that .sk � nk/ D 0. �

A function is log concave if its logarithm is concave. If a function is concave, a
local maximum is a global maximum, and the function is unimodal. This property is
important for finding the maximum likelihood estimate.
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Proposition 3.2 The loglikelihood function (3.7a) or (3.7b), with˚ the standard
normal cumulative probability distribution, is concave in the following two cases:

(a) as a function of the r-parameters frig, or the b-parameters fbj g, and the a-
parameters fa1; a2; : : : ; amg, where Qpi .x/ is given by (3.2);

(b) as a function of the a-parameters fa1; a2; : : : ; amg, or as a function of the
r-parameters frig, where Qpi .x/ is given by (3.4).

Proof It is well known that the standard normal cumulative distribution is log con-
cave. Also, if f .x/ is log concave, then so is f .Az C b/, where Az C b W Rm ! R

1

is any affine transformation from the m-dimensional Euclidean space to the one-
dimensional Euclidean space. Therefore, both the cumulative distributions ˚.x/ and
˚.�x/ are log concave. For Proposition 3.2(a), the concavity of (3.7a) and (3.7b)
follows from the fact that the sum of concave functions is again concave. For
Proposition 3.2(b), the concavity of (3.7a) and (3.7b) as a function of parameters
fa1; a2; : : : ; amg is also immediate.

For Proposition 3.2(b) and the concavity of (3.7a) and (3.7b) as a function of the
r-parameters frig, recall that Qpi .x/ in (3.4) is given by

Qpi .x/ D ˚.ci
p
1C .riv/2 C ri .a1x1 C a2x2 C � � � C amxm � u//:

It suffices to show that the second derivative of the function

L.r/ D logŒ˚.b
p
1C r2 C ra/� (3.11)

is nonpositive for any constants a and b. This is because either log. Qpi .x// or log.1�
Qpi .x// will have the form of (3.11) after some appropriate scaling transformations.

The second derivative d2ŒL.r/�=dr2 is given by
�

br
p
1C r2

C a

�2�
�
Œ'.b
p
1C r2 C ra/�2

Œ˚.b
p
1C r2 C ra/�2

C
'0.b
p
1C r2 C ra/

˚.b
p
1C r2 C ra/

�

C
'.b
p
1C r2 C ra/.b/.1C r2/�3=2

˚.b
p
1C r2 C ra/

D IC II; (3.12)

where ' and '0 denote the first and second derivatives of˚ . Because the factor in the
first summand of (3.12),�

�
Œ'.b
p
1C r2 C ra/�2

Œ˚.b
p
1C r2 C ra/�2

C
'0.b
p
1C r2 C ra/

˚.b
p
1C r2 C ra/

�
;

corresponds to the second derivative of log˚.z/ (with respect to z D b
p
1C r2 C

ra), it is nonpositive. Thus, the first summand in (3.12) is nonpositive. The second
summand in (3.12) is nonpositive if b 6 0. For the b > 0 case, we can change b
back to the negative case using the function F.x/ D ˚.�x/ and repeat the same
discussion to obtain nonpositivity of the second derivative of (3.11). �
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4 PARAMETER ESTIMATION BY MAXIMUM LIKELIHOOD
APPROACHES

In this section we propose an algorithm for parameter estimation for models (3.2)
and (3.4) by maximizing the loglikelihood for observing rank-outcome frequencies.
This generic algorithm works for one forward ordinal model. For modeling rating
migration for a risk-rated portfolio, multiple forward ordinal models are required: one
for each of the nondefault initial risk ratings (see Section 5 for the model formulation
and the adapted algorithm for parameter fitting).

4.1 Estimation of parameters for model (3.2)

The algorithm proposed is essentially a heuristic hard expectation maximization
algorithm.

Parameter initialization: initially, set fr1; r2; : : : ; rk�1g to 1. Estimate the parame-
ters fa1; a2; : : : ; amg and fb1; b2; : : : ; bk�1gwithout constraints (3.3a) and (3.3b),
by maximizing the loglikelihood of (3.7b). Recall that (3.7b) is concave by Propo-
sition 3.2(a). Therefore, global maximum estimates are guaranteed. Rescale the
a-parameter estimates by a scalar � > 0 to make .a1; a2; : : : ; am/ a unit vector,
and then set each of fr1; r2; : : : ; rk�1g to 1=�. This completes the initialization for
all parameters.

Step 1: assume that the parameters fa1; a2; : : : ; amg and fb1; b2; : : : ; bk�1g are
given. Estimate the sensitivities fr1; r2; : : : ; rk�1g by maximizing the loglikelihood
of (3.7b).

Recall that, by Proposition 3.2(a), global maximum estimates are guaranteed.

Step 2: assume that the sensitivities fr1; r2; : : : ; rk�1g are given. Estimate the param-
eters fa1; a2; : : : ; amg and fb1; b2; : : : ; bk�1g by maximizing the loglikelihood
of (3.7b).

Global maximum estimates are granted by Proposition 3.2(a). Rescale the a-
parameter estimates by a scalar � > 0 to make .a1; a2; : : : ; am/ a unit vector,
and then scale the vector .r1; r2; : : : ; rk�1/ by 1=�.

Step 3: iterate the above three steps until a convergence is reached.

Steps 1 and 2 are repeated until convergence is reached, ie, the maximum devi-
ation for all parameter estimates for fb1; b2; : : : ; bk�1g, fa1; a2; � � � ; amg and
fr1; r2; : : : ; rk�1g, in two consecutive iterations, is less than 10�4.

We implement the above three-step optimization process by using the SAS procedure
PROC NLMIXED.

www.risk.net/journal Journal of Risk Model Validation
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4.2 Estimation of parameters for model (3.4)

For model (3.4), we follow the steps above to fit for the coefficients fa1; a2; � � � ; amg
for common score c.x/ D .a1x1 C a2x2 C � � � C amxm/. When this common score
is known, we estimate fr1; r2; : : : ; rk�1g by maximizing (3.7b), with Qpi .x/ given
by (3.4). Global maximum estimates are guaranteed by Proposition 3.2(b).

5 AN EMPIRICAL EXAMPLE: RATING MIGRATION PROBABILITY
AND PROBABILITY OF DEFAULT TERM STRUCTURE FOR A
COMMERCIAL PORTFOLIO

In this section we apply the proposed ordinal model to estimate the rating transition
probability for a risk-rated commercial portfolio, where a point-in-time PD term
structure for IFRS 9 expected credit loss estimation and CCAR stress testing is derived.

The sample contains quarterly rating migration frequencies between 2006 Q3 and
2016 Q4 for a commercial portfolio, created synthetically by scrambling the default
rate using an appropriate scaling. There are twenty-one risk ratings, with R21 the
default rating and R1 the best quality rating.

Because we are more concerned with the default outcome and default risk, we
model rating migration probability with the backward ordinal model, starting with
a rating-level default risk. As noted in Section 2, a backward ordinal model can be
viewed as a forward ordinal model after an appropriate reversion of the outcome order
and of the index of the resulting forward ordinal probability.

The backward ordinal model is benchmarked using the rating transition model
based on the Merton model framework proposed by Yang (2016). Additional bench-
mark comments for SAS ordinal regression using SAS PROC LOGISTIC are given
at the end of this section.

5.1 The backward ordinal and benchmark models for IFRS 9
expected credit loss estimation and CCAR stress testing

5.1.1 Formulation of the models

Backward ordinal model for rating migration probability.

Given a nondefault initial risk rating Ri at the beginning of the quarter, there
are twenty-one possible ordinal outcomes at the end of the quarter: an entity can
migrate to a default rating or any of the other twenty ratings. Given a scenario
x D .x1; x2; : : : ; xm/, let Qpij .x/ denote the backward ordinal probability that the
rating Ri migrates to rating Rj given that it will migrate only to a rating with rank
no higher than j . Bearing in mind that a backward ordinal model can be viewed as a
forward ordinal model by an outcome order and probability index reversion, we can

Journal of Risk Model Validation www.risk.net/journal
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model Qpij .x/ using models (3.2) and (3.4), respectively, as follows:

Qpij .x/ D ˚.bij C rij .a1x1 C a2x2 C � � � C amxm//; (5.1a)

Qpij .x/ D ˚.cij

p
1C .rij v/

2 C rij .a1x1 C a2x2 C � � � C amxm � u//: (5.1b)

We assume that, for each initial rating Ri , the sensitivity parameters rij are the same
for rank-outcome values j when i < j < 21 (downgrade) or 1 6 j < i (upgrade).
Denote the downgrade sensitivity by rid and the upgrade sensitivity by riu. Let ridf

and ris denote the sensitivities for outcome cases j D 21 (default) and j D i (stay),
respectively. Then (5.1a) and (5.1b) reduce to

Qpij .x/ D ˚.bij C ri .a1x1 C a2x2 C � � � C amxm//; (5.2a)

Qpij .x/ D ˚.cij
p
1C .riv/2 C ri .a1x1 C a2x2 C � � � C amxm � u//; (5.2b)

where ri D ridf ; rid; ris; riu, respectively, for default, downgrade, stay and upgrade.
The marginal probability is given by

pij .x/ D .1 � Fij .x// Qpij .x/;

where Fij .x/ D pi21.x/Cpi20.x/C � � � Cpi22�j .x/ is the cumulative probability.
The constraint (3.3a) (respectively, (3.3b)) is imposed for the proposed backward
ordinal model (5.2a) (respectively, (5.2b)).

Rating transition model under the Merton model framework

The point-in-time rating transition probability model, based on the Merton frame-
work, was proposed by Miu and Ozdemir (2009), and extended by Yang (2016) to
facilitate rating-level sensitivity for CCAR stress testing and IFRS 9 expected credit
loss estimation.

Let tij .x/ denote the transition probability from an initial ratingRi at the beginning
of the quarter to rating Rj at the end of the quarter, given a macroeconomic scenario
x D .x1; x2; : : : ; xm/. Let ˚ denote the standard normal cumulative distribution.
Under the Merton model framework (Gordy 2003; Merton 1974; Miu and Ozdemir
2009; Vasicek 2002), it can be shown (Yang 2016) that

tij .x/ D ˚. Nqi.k�jC1/ C Qrici.x// � ˚. Nqi.k�j / C Qrici.x//

D ˚Œ Nqi.k�jC1/ C Qri . Qa1 Qx1 C Qa2 Qx2 C � � � C Qam Qxm/�

� ˚Œ Nqi.k�j / C Qri . Qa1 Qx1 C Qa2 Qx2 C � � � C Qam Qxm/�; (5.3)

where Nqih D qih
p
1C Qr2i ; the quantities fqij g are the threshold values given by

qij D ˚
�1. Npij /, where Npij is the through-the-cycle transition probability from Ri
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to Rj , which can be estimated directly from the historical sample. The sensitivity
parameter Qri is the same for all rank outcomes for a given rating Ri .

The credit index ci.x/ D Qa1 Qx1 C Qa2 Qx2 C � � � C Qam Qxm is derived by a normaliza-
tion from a linear combination a1 Qx1 C a2 Qx2 C � � � C am Qxm, with which the model
fpi .x/g best predicts the portfolio default risk, in the sense of maximum likelihood,
for observing default frequencies, where

pi .x/ D ˚Œci C Qri . Qa1 Qx1 C Qa2 Qx2 C � � � C Qam Qxm/� (5.4)

is a model predicting the PD for rating Ri and no constraint is imposed for intercept
ci . The quantity Qri is driven by

Qri D
ri�q

1C r2i .1 � �
2/

; 0 6 � 6 1; (5.5)

where ri D
p
�i=
p
1 � �i , and �i is the asset correlation in the Merton model for

rating Ri (Yang 2016).

Remark 5.1 We can choose to fit for fa1; a2; : : : ; amg without constraint (5.5).
The unconstrained result is always better than the constrained one in the sense of a
higher likelihood value.

5.1.2 Fitting for parameters

We focus on macroeconomic scenarios and consider parameter fitting only for models
(5.2b) and (5.3).

For models (5.2b) and (5.3), parameter fitting follows the two steps below.

(1) Fit for the macroeconomic variable coefficients fa1; a2; : : : ; amg by using max-
imum likelihood to observe rating-level default frequencies, with default prob-
ability pi .x/ for rating Ri given by (5.4) without constraint (5.5). This can be
done via Steps 1–3 in Section 4.

(2) When credit index ci.x/ D Qa1 Qx1 C Qa2 Qx2 C � � � C Qam Qxm has been determined,
we need to fit only for the risk sensitivity parameters frig for model (5.3), and
fridf ; rid; ris; riug for model (5.2b), for all risk ratings. For model (5.3), we can
choose to fit for frig either separately for each rating Ri , or as a combination
of all ratings, using the appropriate likelihood function (3.7b) for all rating
migration frequencies, or (3.7a) for downgrade or default frequencies only.
The corresponding loglikelihood function is concave by Proposition 3.2(b). For
model (5.2b), we fit for each of the four groups fridfg, fridg, frisg and friug sep-
arately, using the appropriate likelihood function (3.7a) for the corresponding
migration frequency.
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TABLE 1 Macro coefficients.

Model v1 v2 p1 p2

BORD 0.3975 0.6025 0.0247 <0.0001
RTGM 0.3975 0.6025 0.0247 <0.0001

In general, monotonicity is imposed for sensitivity between ratings; specifically, we
require that frig, fridfg and fridg are nondecreasing and that frisg and friug are
nonincreasing for a higher risk rating.

5.2 Validation results

We use the following labels for the backward ordinal and the benchmark models.

� BORD: the backward ordinal model (5.2b).

� RTGM: the rating migration model based on the Merton model framework (5.3).

Both models use the same variables, provided by the US Federal Reserve:

� three-month treasury bill interest rate (v1);

� unemployment rate (v2).

The macro coefficients for credit index ci.x/ D a1x1Ca2x2C� � �Camxm are fitted
as described in Section 5.1 in the same way for both the BORD and RTGM, so both
models have the same macro coefficient estimates. Table 1 records the estimates for
these two variable coefficients, with the variable p-values p1 and p2.

For the BORD the sensitivity parameter estimates are reported as in Table 2 for
twenty nondefault ratings for default, downgrade and stay, with monotonicity con-
straint being imposed. The sensitivity estimates for upgrade are all close to zero
(reflecting the fact that the upgrade probability is slim in the stress period), and are
not shown in the table. The RTGM estimates the sensitivity parameters by maximum
likelihood for observing only the default frequency. Thus, for default it has the same
sensitivity estimates as the BORD.

Table 3 shows the backtest performance for two R-squared-based models for
predicting portfolio cumulative default rates for one, four, six, twelve and sixteen
quarters.

The results show performance improves for the BORD when the sensitivities are
differentiated between migrations to default, downgrade, stay and upgrade. This
improvement is a trade-off with the addition of more sensitivity parameters.
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TABLE 2 Sensitivity parameter estimates.

Migration Default Downgrade Stay

1 0.001 0.128 1.992
2 0.001 0.129 1.992
3 0.002 0.130 0.258
4 0.003 0.131 0.258
5 0.004 0.132 0.258
6 0.005 0.133 0.144
7 0.017 0.134 0.133
8 0.059 0.135 0.051
9 0.059 0.136 0.051

10 0.059 0.151 0.051
11 0.059 0.228 0.051
12 0.059 0.229 0.051
13 0.059 0.230 0.051
14 0.059 0.231 0.051
15 0.059 0.248 0.051
16 0.059 0.249 0.050
17 0.060 0.362 0.050
18 0.060 0.504 0.050
19 0.769 1.139 0.050
20 0.769 — 0.050

TABLE 3 R-squared values for predicting portfolio cumulative default rate.

Quarters‚ …„ ƒ
Model 1 4 8 12 16

BORD 0.420 0.575 0.570 0.792 0.777
RTGM 0.420 0.558 0.518 0.726 0.660

We end this section by commenting on an additional benchmark based on SAS
ordinal regression using SAS PROC LOGISTIC, with both logit and probit as the
link functions, via the “class” and “by” options.

When the “by” statement is used for initial ratings, for each initial rating Ri , SAS
fits an ordinal regression model of the form

Fij .x/ D ˚.bij C ai1x1 C ai2x2 C � � � C aimxm/

for the cumulative probability for rank outcome j < 21. This model has redundant
coefficients (depending on the rating index i ) for such a short time series sample,
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causing an overfitting issue. More importantly, it is not formulated using a common
score or sensitivity. We do not recommend this model.

When the “class” statement is used, the initial risk rating is treated as a class variable
in the model, and for each initial risk ratingRi , SAS fits an ordinal model of the form

Fij .x/ D ˚.bij C a1x1 C a2x2 C � � � C amxm/

for the cumulative probability for the rank outcome j < 21. The intercept vectors for
initial risk rating Ri and R1 satisfy the following equation:

.bi1; bi2; : : : ; bi20/ D .di C b11; di C b12; : : : ; di C b120/ (5.6)

with constant di corresponding to the i th level of the class variable. That is, the
intercept vector for Ri is a translation of the intercept vector for R1. As expected,
this model fails to predict the default risk and other migration risk. It overestimates
PD for the high risk ratingsR19 andR20, and significantly underestimates the PD for
other ratings. We do not recommend this model.

6 CONCLUSIONS

Ordinal regression models are widely used for modeling rating migration. Results
are generally not very optimistic, partly due to the lack of flexibility with respect
to the sensitivity (between rank outcomes and between risk ratings). In this paper,
we proposed an ordinal model based on forward ordinal probabilities. Under this
model, forward ordinal probabilities are formulated by a common score plus rank- and
rating-specific sensitivity. The rank-specific sensitivity allows a risk rating to respond
to its own migration patterns to default, downgrade, stay and upgrade accordingly.
Empirical results show our model is more robust than the rating transition model
based on the Merton model framework. Unlike the latter model, which allows only
one sensitivity parameter for all rank outcomes for a rating, and uses only systematic
risk drivers, our proposed ordinal model differentiates sensitivities between outcomes
and includes entity-specific risk drivers. No estimation for asset correlation is required.
The model can be implemented by using, for example, the SAS PROC NLMIXED
procedure. This forward ordinal model will provide a useful tool for practitioners to
estimate the point-in-time PD term structure for IFRS 9 expected credit loss estimation
as well as multiperiod scenario loss projection for CCAR stress testing.
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