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ABSTRACT

This paper brings Black–Litterman optimization, exotic betas and varying starting
portfolios together into one complete, symbiotic framework. The approach is unique
because these techniques are often viewed as alternatives rather than as complements
to each other. We first demonstrate the approach using exotic beta as the “views”
in the Black–Litterman optimization. This framework benefits investors who already
utilize the classic Black–Litterman approach and appreciate advances in the exotic
beta research, and also those who focus on practical implementation of exotic betas.
We then explore the framework using the risk-parity portfolio as an efficient starting
portfolio for Black–Litterman optimization on both theoretical and practical grounds.
We demonstrate that risk parity is a highly effective starting point in many situations.
Finally, as part of our discussion, we derive conditions under which almost any com-
pletely diversified portfolio may be used as a starting portfolio in the Black–Litterman
process. The integrated methodology developed is robust, flexible and easily imple-
mented, which means that a wide range of investors can benefit from this framework.
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1 INTRODUCTION

The Black–Litterman model has contributed to the field of quantitative portfolio man-
agement by elegantly applying Bayesian statistics to marry two seemingly contradic-
tory ideas: the efficiency of the market portfolio and the efficacy of alpha modeling.
However, the practical implementation of the model is often difficult because it relies
on expert opinions, which often are hard to obtain and of uncertain quality, and the
capitalization weights of the market portfolio, which are not always available. Further,
the market portfolio is assumed to be nearly efficient. The latter assumption has often
been questioned over the last two decades.

Exotic beta is a well-established concept emanating from a large body of research
that presents a ready-made set of prior beliefs for people who trust the established
literature more than a privately built model. This paper explores two aspects of Black–
Litterman and exotic beta. First, we consider the likelihood that exotic beta will
improve the performance of an index portfolio inside a Black–Litterman framework.
Second, we consider using the Black–Litterman framework to derive an implementa-
tion portfolio for exotic beta. Our conclusion is that this combination is effective on
both counts.

From a practical point of view we wish to address situations that may come up in
the real world.

(1) A manager likes the Black–Litterman framework but does not have access to a
good proprietary view. In this case, exotic beta may perform as the options.

(2) A manager likes the idea of the Black–Litterman framework but does not nec-
essarily believe that a capitalization-weighted portfolio is efficient, or cannot
get accurate capitalization weights. In this case, the risk-parity portfolio may
perform as a starting portfolio.

(3) A manager likes exotic beta tilts to a portfolio and seeks a good implementation
methodology. In this case, the Bayesian construction of Black–Litterman scales
the exotic beta and provides returns that can be optimized.

(4) A portfolio manager wishes to use the Black–Litterman model, but does not
wish, or is unable, to start with the market portfolio. In this case, we derive a
more general reverse optimization that can be used with any well-diversified
portfolio.

The net result of this research is that a wide range of investment professionals –
including the portfolio manager interested in applying exotic betas, the fund-of-funds
manager or commodity trading advisor interested in applying Black–Litterman and
anyone interested in extending their tool set of allocation techniques – should find
these results appealing.
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The paper unfolds as follows. First, we demonstrate the manner in which exotic
betas may be integrated with the Black–Litterman framework using a simple ten-stock
example with an exotic beta of low volatility. Second, we illustrate the difference
between starting Black–Litterman with a risk-parity portfolio and starting it with a
capitalization-based portfolio using the same ten-stock example. Finally, we demon-
strate how Black–Litterman, risk parity and exotic beta can be integrated within the
Bayesian risk-parity framework using a three-asset-class example of stocks, bonds
and commodities, which is particularly interesting because capitalization weights are
not available. For this example, cross-sectional momentum is chosen as the exotic
beta.

Along the way, we will also demonstrate an algorithm by which almost any very
well-diversified portfolio may be used as the starting portfolio in the Black–Litterman
framework, without sacrificing theoretical integrity.

2 STANDARD BLACK–LITTERMAN OPTIMIZATION

The original Black–Litterman model changed the landscape of quantitative portfolio
management by combining into a single framework the two seemingly contradictory
ideas of the efficiency of the market portfolio and alpha models. Black–Litterman
optimization takes the implied returns from a cap-weighted index, which represents
the market portfolio, combines them with a personal view on expected returns (the
prior) and reinverts the linear combination of expected returns (the posterior) into a
final portfolio.

The capital asset pricing model (CAPM; see Sharpe 1964; Lintner 1965) sug-
gests that the market portfolio is an excellent starting point because, under fairly
restrictive assumptions, in equilibrium the expected return from diversifiable risk is
equal to zero and the market portfolio should have the highest Sharpe ratio.1 How-
ever, Black–Litterman also allows personal views on expected returns for assets
that are deemed to be away from their equilibrium value. As we will show, the
Black–Litterman solution represents returns that are a weighted average of the mar-
ket portfolio (or, more generally, the data model portfolio) and a portfolio that

1 Roll (1978) dimmed some hopes by pointing out that the ultimate market portfolio is unobservable
in the real world, but he also pointed out that any very well-diversified cap-weighted portfolio would
have little unsystematic risk, and that portfolios of these indexes would be nearly efficient and still
have returns directly related to their betas. These insights led to the philosophy that, with the
preponderance of people all keeping the market efficient through analysis, trying to beat the market
was a fool’s errand. As Ellis (1975) stated, indexing and long-term goal planning were the way to
avoid playing a “loser’s game”.
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fully incorporates the private expected return model (the prior). This suggests that
the many desirable properties of the Black–Litterman methodology, documented
in Black and Litterman (1992) and Bevan and Winkelmann (1998), are driven by
diversification.

As Markowitz (1952) suggests, the efficient frontier with a risk-free asset available
is defined by a linear function of portfolio weights, w�, that solves the problem

min
w

1
2
w0Vw � �.T � rf � .r � rf /

0w/; (2.1)

where r is a vector of expected returns, w is the vector of portfolio weights, V is
the covariance matrix of excess returns, � is a Lagrange multiplier closely related
to the inverse of risk aversion, T is a target return and rf is the risk-free rate. It is
easily shown that the capitalization-weighted portfolio is a solution to (2.1), assuming
the assumptions of the CAPM are not violated. This vector of returns (the starting
solution) may be expressed as

r� D rf e C

�
rm � rf

�rm

��1
�rmVw

�; (2.2)

where rm is the capitalization-weighted (market) return, e is a conformable vector of
ones andw� is the vector of capitalization weights. Note that the term in parentheses
represents the Sharpe ratio. It may be estimated from the historical data, or from other
outside considerations. Its appearance comes from the fact that, for a target rate in
(2.1) equal to the market return,

� D

�
rm � rf

�rm

��1

is a necessary part of the solution.
Equation (2.2) gives returns consistent with the capitalization-weighted portfolio

being on the minimum variance set, along the tangency line from the risk-free rate,
and is used in deriving implied returns of the Black–Litterman model. Following
Black and Litterman (1992) and Meucci (2010), we allow the possibility that, besides
the “public” opinion of returns (public in that it is based on the market being in
equilibrium), a portfolio manager gives credence to a private model of returns: a prior
belief that some additional factors are needed to determine the equilibrium return.
The Black–Litterman model imposes such beliefs using a matrix of constraints on the
distribution of returns. For example, if we wanted to model the belief that all returns
would be equal next period (we are not advocating this), it could be written within
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the standard Black–Litterman framework as

P r�� D

2
66666664

1 �1 0 � � � 0 0

0 1 �1 � � � 0 0

:::
:::

:::
: : :

:::
:::

0 0 0 � � � �1 0

0 0 0 � � � 1 �1

3
77777775
�

2
66666664

r��1

r��2
:::

r��n�1

r��n

3
77777775
� N.�; ˝/: (2.3)

Equation (2.3) implies that the difference in the forecasted returns of any two assets
is distributed normally around some values, which in this case would be a vector of
zeros. This particular set of beliefs is that the difference in return of any two assets
will be expected to be zero with some variability.

To account for the variability, a good choice is to follow Meucci (2010) and set

˝ D
1

c
PVP T;

where c represents the strength of conviction about the prior.2

The brilliancy of Black–Litterman optimization is that the final (posterior) return
vector may be written as

r D .1 � x/r� C xr��; (2.4)

where
x D

c

1C c
and r�� D r� C VP T.PVP T/�1.� � P r�/:

Equation (2.4) implies that the posterior return is a portfolio of the data-model-based
return and the prior-based return. This also means that the portfolio formed from the
posterior returns will be a linear combination of the portfolios formed from the data-
based returns and prior returns. Moreover, the portfolio resulting from the posterior
returns (by (2.2)) will also be a linear combination of the portfolios obtained from
the starting returns and the views-based returns.3 Since these portfolios will not gen-
erally have perfect correlation, this yields diversification benefits that can potentially

2 A c near zero would mean no belief in the prior (and thus it should not be considered), whereas
c tending toward infinity would indicate certainty that the prior is the correct forecast for the next
period (this return is a conditional return, based on the state of the efficient frontier, even if we think
it is, at least in part, completely incorrect).
3 One minor problem is that the Bayesian return vector might not reinvert into a portfolio with
normalized weights using (2.2) if assets are highly correlated. In this paper, we simply rescale the
weights to equal 1 in total. An alternative would be to take the returns and apply them to Markowitz
optimization or a more general quadratic program directly.
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improve the risk-adjusted return of the data portfolio, as long as the prior returns are
sufficiently strong.4

3 THE BLACK–LITTERMAN FRAMEWORK WITH EXOTIC BETAS

What became known as “exotic beta” appeared in the literature in the very early days
of equilibrium asset pricing theory. Deriving from the literature originally referred
to as the anomaly literature, meaning things that are outside the standard canon of
CAPM orthodoxy, such non-CAPM risk factors began to really take shape in work
by Fama and French (1992) and, later, Carhart et al (1997). Carhart et al (2014)
explored the notion of exotic beta rather fully and concluded that exotic beta is a
powerful portfolio management tool. They defined exotic betas as exposures to risk
factors that are uncorrelated with global equity markets and have positive expected
returns. This definition suggests that exotic betas are not stock-specific “alphas” in
the traditional sense of being an unsystematic return specific to a stock, but rather are
sensitivities to risk premiums that are outside of the CAPM, and presumably more
stable than the market risk premium.

Exotic betas (or any other “alpha” model) might seem to invalidate the Black–
Litterman framework, which assumes that the market portfolio is nearly efficient. If
the CAPM were strictly true, the market portfolio would account for all systematic
risk, and no prior return vector (due to exotic beta, or otherwise) would be needed. So,
when we are using a Black–Litterman framework, the starting index portfolio may
be thought of as approximately on the efficient frontier, but there is some inefficiency
(or weighted group of inefficiencies) that can be added to the market returns to make
more accurate asset return forecasts.

Another interpretation of the Black–Litterman approach is to treat it as a mixture
model, where we believe there is a 1=.1Cc/ chance that the market is efficient by itself
and the implied expectations are correct, and a c=.1Cc/ chance that a different set of
return expectations is the efficient portfolio. The combination of the two probabilities
results in hybrid forecasts of asset returns that are part market portfolio return and part
exotic beta return. Of course, many methods of applying exotic betas are possible, but
the additional benefit of this method is that it provides a distinctly different approach
to extracting returns from exotic betas from those documented in the literature.

The nice thing about (2.3) is that it allows the reverse-optimization returns to scale
the exotic beta returns. Looking closely at (2.3), we note that there are n�1 equations
and n assets. This allows infinitely many solutions. However, (2.4) specifies that the

4 The required strength of the prior returns can be expressed using a simple inequality. Prior returns
y will improve performance of the data-based returns x if and only if Sharpe.y/ > corr.x; y/ �
Sharpe.x/. Though the CAPM suggests that there should be no priors strong enough to improve
performance, a rich literature on market anomalies presents evidence that such priors exist.
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solution chosen will be the one that puts the exotic beta returns on the same scale as
the reverse-optimization returns.

To make this discussion more concrete, Table 1 gives descriptive statistics for ten
Dow Jones industrial stocks, whose returns are observed monthly, for the period
from January 1995 to May 2015. This small number of stocks was chosen to make
covariance estimation a trivial issue that would not interfere with the main points of
the paper.5

We illustrate how to incorporate exotic betas in the Black–Litterman framework
by starting with a capitalization-weighted portfolio of the ten stocks and using the
low-volatility anomaly, described in Jagannathan and Ma (2003), as an example of
an exotic beta. In this case, the future expected Sharpe ratio is considered to be an
inverse function of previous volatility. An easy way to represent this prior within the
current framework is to state, for any pair of assets, the expected difference in their
Sharpe ratios going forward as a percentage of the trailing difference in their inverse
volatility.

Specifically, this prior return, consistent with the low-volatility anomaly, may be
written for all assets as
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with

vi D ˛

�
1

�i
�

1

�iC1

�
:

For this example we use alpha equal to 0.001, and the prior return equation indicates
there is an expectation that the difference in Sharpe ratio between two assets will be
directly related to the difference in their inverse volatilities.

5 There is no consensus as to the optimal estimation method for larger covariance matrixes, but a
number of approaches have been introduced. Ledoit and Wolf (2004) suggest shrinking a sample
covariance matrix; Jagannathan and Ma (2003) consider using daily returns and factor models in
addition to shrinkage; Pafka et al (2004) argue for applying filtering based on the random matrix
theory. The issue of estimating the covariance matrix is beyond the scope of this paper. For this
particular small problem, covariance estimates rely on a simple sixty-month sample.
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TABLE 2 Black–Litterman applied to the ten-stock example using the low-volatility
anomaly.

c D 0 c D 1=3 c D 1 c D 3 c D1

Annualized excess return (%) 3.64 3.92 4.21 4.50 4.79
Annualized standard deviation (%) 12.17 12.15 12.45 13.10 14.08
Sharpe ratio 0.299 0.323 0.338 0.344 0.340

Monthly rebalancing. Out-of-sample period: February 2000 to May 2015.

TABLE 3 Comparison of two implementations of the low-volatility anomaly.

Standard Bayesian
implementation prior approach

Annualized excess return (%) 0.68 1.15
Annualized standard deviation (%) 11.78 8.39
Sharpe ratio 0.06 0.14

Standard refers to a typical long–short implementation. The Bayesian prior approach is a long–short portfolio that
goes long Black–Litterman with infinite c (100% weight to the low-volatility prior) and short market portfolio. Out-of-
sample period: February 2000 to May 2015.

Table 2 outlines the results of applying the Black–Litterman model to a market-
weighted reverse-optimization model and a low-volatility prior with several levels
of c that represent 25%, 50%, 75% and 100% weights to the low-volatility anomaly
prior.6 In this case, the maximal Sharpe ratio of 0.344 is accomplished at c D 3,
representing a 75% weight to the prior, which is superior to 0.299, the Sharpe ratio of
the market portfolio; this suggests that the low-volatility anomaly view used within
the Black–Litterman framework can substantially improve performance.

Another interesting experimental result is shown inTable 3, which compares the per-
formance of the standard implementation of the low-volatility anomaly and our imple-
mentation, based on the Black–Litterman framework. The standard implementation
ranks stocks based on their in-sample volatility and then buys the bottom quintile of
stocks (low-volatility stocks) and sells short the top quintile of stocks (high-volatility
stocks). Portfolio weights are inversely proportional to historical inverse volatilities.
The Black–Litterman approach purchases the highest Sharpe ratio portfolio implied
by Black–Litterman returns with c D1 (100% weight to the low-volatility anomaly
prior) and sells short the market portfolio.7

6 For example, if c D 1=3, this represents a 1=.1Cc/ D 25% weight assigned to return expectations
of the market portfolio and a 75% weight assigned to those of the prior.
7 Once we have the Black–Litterman returns we can use standard Markowitz optimization or con-
strained quadratic optimization. The results in Table 3 use standard Markowitz optimization to find
the highest forecast Sharpe ratio portfolio.
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The Sharpe ratio of the Bayesian prior approach is equal to 0.14, which is more
than twice 0.06, the Sharpe ratio of the standard implementation of the low-volatility
anomaly. Though the relative performance of the two implementations of the low-
volatility anomaly (or any exotic beta in general) can be sensitive to the time period,
portfolio constituents and choice of parameters, the Bayesian prior approach substan-
tially expands the toolbox of exotic beta implementation with potentially significant
performance implications for investors.

Carhart et al (2014) suggest that utilizing a limited version of Black–Litterman
with exotic betas as portfolio constituents is unlikely to diminish its power. We have
extended this result by showing that the standard Black–Litterman implementation
can be combined with exotic betas, by using them as views, to achieve multiple
useful results. In the next sections, we extend the notion of reverse optimization to
utilize portfolios other than the capitalization-weighted portfolio. This paper is, to the
best of our knowledge, the first to investigate the implications of alternative efficient
portfolios for Black–Litterman optimization and suggest a version of Black–Litterman
optimization that extends its application to many new investment situations.

4 THE MARKET PORTFOLIO,THE RISK-PARITY PORTFOLIO AND
EFFICIENCY

While the CAPM suggests that a capitalization-weighted market portfolio should
have the highest Sharpe ratio, there are situations in which the market portfolio is
either suboptimal or even inappropriate. For example, fund-of-hedge-funds allocation
decisions, and decisions involving futures contracts generally, do not readily admit
capitalization calculations, which makes capitalization-weighted market portfolios
unattainable. Moreover, Asness et al (2012) suggest that the market portfolio is not
efficient, and instead argue that the risk-parity portfolio approach, which equalizes the
contribution to portfolio risk from each constituent, is more efficient due to leverage
aversion.8 Qian (2006) provides a comprehensive analysis of risk-parity portfolios.
We outline the technical details of the risk-parity approach in the online appendix.

Since capitalization weights are available in the ten-stock Dow Jones example, we
can easily compare the performance of the capitalization-weighted market portfolio
and risk parity. Table 4 reports the out-of-sample performance of the two portfolios.

The risk-parity portfolio delivers a Sharpe ratio of 0.45, which is higher than 0.30,
the Sharpe ratio of the market portfolio. However, we need to be careful about drawing

8 Asness et al (2012) argue that leverage aversion changes the predictions of modern portfolio theory,
because investors without access to leverage are unable to benefit from higher risk-adjusted returns
of safer (low-beta or low-volatility) assets. Risk parity portfolios overweight safer assets relative to
the market portfolio and benefit from their higher risk-adjusted returns after applying leverage.

Journal of Investment Strategies www.risk.net/journal
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TABLE 4 Comparison of capitalization-weighted market portfolio and risk parity.

Market Risk parity

Annualized excess return (%) 3.64 5.74
Annualized standard deviation (%) 12.17 12.89
Sharpe ratio 0.30 0.45

Out-of-sample period: February 2000 to May 2015.

conclusions about the efficiency of risk parity from this simple example. Anderson
et al (2012) argue empirical studies that make claims about the efficiency of risk parity
might be very sensitive to the time period studied and the transaction costs assumed.
Our simple example is also not immune to their criticism.

To summarize, there is reason to believe that, at least sometimes, an equal-risk-
weighted index portfolio may be more efficient than a capitalization-weighted port-
folio. Also, there are times when capitalization weights are unavailable. In either of
these situations, the risk-parity portfolio is a good candidate for the data-based starting
point in the Black–Litterman framework.9

5 AN ALTERNATIVE REVERSE OPTIMIZATION

The importance of the Black–Litterman framework is that it provides a way of mixing
market-data-based returns with prior views about assets that are not priced properly
by the market. A key thing to realize is that reversing the first-order condition in
the Markowitz model is theoretically permissible for any portfolio on the minimum
variance set. The mathematics are only slightly more complicated, and the basics are
outlined below.

The Markowitz model may be written in an alternative form as

min 1
2
w0Vw � �.T � rTw/C �.1 �w0e/:

In this formulation there are two constraints. The risky assets’ weights must sum to
1, and the target expected return must be achieved. By varying the target, we map
the entire minimum variance set. This formulation leads to the following reverse-
optimization returns:

r D
Vwp � �pe

�p
; (5.1)

where wp are the weights of the presumed efficient portfolio.

9 Although some people may find the notion that the equal risk portfolio is possibly efficient strange,
even less likely is the fact that diversified portfolios have been shown to be efficient in some cases.
DeMiguel et al (2009) maintain that, for their universe, the equal-weighted 1=N portfolio was more
efficient than more conventional alternatives.
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FIGURE 1 Reverse-optimization scenarios.

P1

P2

×

×

Now, to complete the solution of (5.1), we need to define rmv as the return of the
minimum variance portfolio, whose weights are given by

wmv D
V �1e

eV �1e
;

which is a function only of the elements of the covariance matrix, not expected returns.
Now,

�p D
�2p � �mv;p

rp � rmv
;

�p D �p Nrp � �
2
p :

9>=
>; (5.2)

The individual reverse-optimization returns may be obtained using (5.1) and (5.2). In
this formulation, we have replaced the use of information about the risk-free rate and
the capitalization-weighted portfolio with the use of information about the minimum
variance portfolio and our assumed minimum variance portfolio.

Now that we have two reverse-optimization methodologies, which should we use?
Figure 1 helps us answer this question. If we believe our portfolio is a minimum
variance portfolio and is the one with the highest Sharpe ratio, then it is at point P1
and we should use (2.2). This is the market portfolio, if the CAPM is strictly true,
but may be another portfolio if it is not. Only if the CAPM is true will P1 be the
capitalization-weighted portfolio. If we believe that we have a minimum variance
portfolio (mainly a very well-diversified portfolio) but not that it is at P1 (perhaps
it is at P2), then we should use (5.1) and (5.2). Equations (5.1) and (5.2) are useful
when the only thing we know is that our starting portfolio is very well diversified
with respect to the investment universe. Equation (2.2) is useful when we believe our
starting portfolio has not only the minimum variance but also the maximal Sharpe
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TABLE 5 Descriptive statistics of bonds, stocks and commodities.

Bonds Stocks Commodities

Annualized excess return (%) 2.79 3.36 �0.71
Annualized standard deviation (%) 5.45 14.63 19.26
Sharpe ratio 0.51 0.23 �0.04

This table shows the annualized excess return, standard deviation and Sharpe ratio of bonds, stocks and commodities
for March 1976 through May 2015. The Barclays US Aggregate Government Index is used as a proxy for the bond
market, The MSCI World Index is used as a proxy for the stock market, the S&P Goldman Sachs Commodities Index
is used as a proxy for the commodities market and the three-month treasury bill secondary market rate is used as
a proxy of the risk-free rate.

ratio with respect to the universe. That this portfolio is the capitalization-weighted
portfolio is a function of also believing the CAPM is strictly true. This discussion
opens up reverse optimization as the starting point for a very large number of possible
portfolios.

Having established in the previous section that the risk parity can be considered
a reasonable maximal Sharpe ratio portfolio, we will take it as a starting point for
Black–Litterman using (2.2). One interesting thing to note (discussed in the online
appendix) is that the risk-parity portfolio simply says that each asset’s contribution to
total risk should be made equal. This does not mean that each asset should have the
same Sharpe ratio or the same expected return.

6 TWO EXAMPLES OF A RISK-PARITY STARTING PORTFOLIO

We illustrate the risk-parity and exotic beta approach by considering two simple exam-
ples with investments in three major asset classes: stocks, bonds and commodities.
The data for these experiments covers the period from March 1976 through May 2015,
and consists of the MSCI World Index, as a proxy for the stock market, the Barclays
US Aggregate Government Index, to represent the bond market, and the Standard
& Poor’s (S&P) Goldman Sachs Commodity Index, to represent commodities. We
use the three-month treasury bill secondary market rate as a proxy for the risk-free
rate. Inclusion of commodities is particularly interesting because they do not have
capitalization weights, and therefore the capitalization-weighted market portfolio is
unattainable.10

Table 5 presents some relevant descriptive statistics of the data. One interest-
ing statistic is that the three asset classes perform very differently over this time
period, with commodities performing worst, with a Sharpe ratio of �0:04, and bonds
performing best, with a Sharpe ratio of 0:51.

10 Portfolio allocations that involve hedge funds are another example of limitation in the
capitalization-weighted approach.
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However, the relative performance of the three asset classes across time is very
inconsistent. Figure 2 displays the rolling twenty-four-month Sharpe ratio of the
three assets.11

Absolute and relative performance is inconsistent across time, with the Sharpe
ratios ranging between around �2:5 and aroundC2:5.

The first step in this extended Black–Litterman approach is calculating risk-parity
weights and the corresponding implied expected excess returns using (2.2). The sec-
ond step involves imposing exotic-beta-based views. We consider two examples that
can have broad applications to many investors. The first example considers momen-
tum as an exotic beta that is robust across most asset classes, as documented in Asness
et al (2013). The second example considers an equal Sharpe ratio prior.

6.1 Risk parity with momentum

Momentum is a pervasive anomaly that has been extensively documented in the
literature. We express belief in momentum in Sharpe ratios using (3.1) with the same
matrix P and vector

vi D ˛

�
NRi

�i
�
NRiC1

�iC1

�
:

We set ˛ D 0:05, which represents the belief that the difference in the future Sharpe
ratios of any two assets is expected to equal 5% of the most recent Sharpe ratios.
In this simple example we use a time window of twenty-four months to estimate
recent Sharpe ratios. As before, we use the same levels of c, representing 25%, 50%,
75% and 100% weights to the exotic beta belief. The results of this experiment are
presented in Table 6.

In this case, the maximal Sharpe ratio of 0.35 occurs at c D 3, representing a
75% weight to the prior, which is superior to 0.253, the Sharpe ratio of the risk-
parity portfolio; this suggests that the momentum in the risk-adjusted return prior
used within the Black–Litterman framework can improve performance.

6.2 Risk parity with equal Sharpe ratios

Although belief in equal Sharpe ratios is unrelated to exotic beta, it is an interesting
case to study. There is a sizable group of investors who hold this belief about diversified
asset classes. In addition, there are fund-of-(hedge) funds managers who have very
high requirements for their hedge funds; this is reflected in their rigorous due diligence
steps, which result in approximately the same Sharpe expectations across hedge funds

11 In this section, we choose to use rolling twenty-four-month sample estimates for all covariance
and variance estimates. With only three assets, a longer period is not required.
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FIGURE 2 Rolling twenty-four-month Sharpe ratios of stocks, bonds and commodities.
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TABLE 6 The three-asset example with risk parity and momentum.

c‚ …„ ƒ
0 1/3 1 3 1

Annualized excess return (%) 2.08 2.07 2.02 1.96 1.90
Annualized standard deviation (%) 8.21 6.52 5.89 5.59 5.44
Sharpe ratio 0.253 0.318 0.343 0.350 0.349

in the portfolio. Finally, it is illuminating to show how even a fairly weak prior
performs in the Black–Litterman framework.

Table 5 shows that commodities substantially underperformed stocks and bonds
over the time period in this study. However, other studies, such as Gorton and Rouwen-
horst (2006), argue that an equally weighted index of commodity futures’ monthly
returns should deliver a Sharpe ratio comparable to that of equities. The equal Sharpe
belief can be expressed using (3.1) with the mean vector set to zero.

Table 7 reports results of the out-of-sample performance. The maximal Sharpe
ratio of 0.316 corresponds to c D 1, representing a 50% weight to the prior, which is
superior to 0.253, the Sharpe ratio of the risk-parity portfolio. This suggests that the
prior of equal Sharpe ratios used within the Black–Litterman framework can add value.
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TABLE 7 The three-asset example with risk parity and equal Sharpe priors.

c‚ …„ ƒ
0 1/3 1 3 1

Annualized excess return (%) 2.08 2.03 1.93 1.81 1.69
Annualized standard deviation (%) 8.21 6.65 6.10 5.87 5.79
Sharpe ratio 0.253 0.305 0.316 0.308 0.292

Monthly rebalancing. Out-of-sample period: March 1978 to May 2015.

FIGURE 3 Risk-parity performance
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The figure displays results from Table 7. c D1 is the point furthest south and c D 0 is the point furthest northeast,
representing the classical risk-parity approach.The line from the origin is tangential to the frontier at the point with the
highest Sharpe ratio, which is approximately c D 1. The axes show excess returns and excess standard deviation.

The above approach gives combinations of starting returns and view returns that
allow us to reach Sharpe ratios unobtainable through either approach alone. The
exact nature of this improvement is apparent in Figure 3, which presents the data in
Table 7 in graphical form, and once again demonstrates the diversifying power of
Black–Litterman even in the face of a rather weak prior.

The curve, reminiscent of a Markowitz frontier, reiterates the benefits of diversifi-
cation produced by the Bayesian risk-parity method. The straight line from the origin
to the combination line of strategic outcomes shows that the maximum obtainable
Sharpe ratio is at approximately c D 1 for this particular combination of strategies
and assets over this particular period. While it is true that this diversification benefit
would occur with almost any prior, the better the prior actually is, of course, the better
the opportunities are.
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7 CONCLUSION

In this paper, we demonstrate that using the exotic beta as a prior alpha model in Black–
Litterman optimization is attractive to investors that already utilize the classic Black–
Litterman approach and seek to incorporate advances in the exotic beta research, and
to those who focus on practical implementation of exotic betas. The reason for this
behavior is that the diversification of alpha sources benefits an investor, whether they
want a portfolio that is mainly efficient-portfolio based, mainly exotic-beta based or
one that maximizes the Sharpe ratio.

In addition, we introduce risk parity as a valid starting portfolio, and produce a
methodology for using almost any well-diversified portfolio as a starting portfolio.
This is useful when the capitalization-weighted portfolio is not an appropriate starting
point.

Our extended Black–Litterman approach symbiotically unifies the Black–Litter-
man optimization, exotic betas and risk parity into a single, flexible framework that
combines the various strengths of the three approaches to improve investors’ port-
folios. These results give a large number of investment professionals new tools for
their investment tool box without throwing out everything they might previously have
been using.
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