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ABSTRACT

A compound Poisson distribution is the sum of independent and identically distributed
random variables over a count variable that follows a Poisson distribution. Generally,
this distribution is not tractable. However, it has many practical applications that
require the estimation of the quantile function at a high percentile, eg, the 99.9th
percentile. Without loss of generality, this paper focuses on the application to opera-
tional risk. We assume that the support of random variables is nonnegative, discrete
and finite. We investigate the mechanics of the empirical aggregate loss bootstrap dis-
tribution and suggest different approximations of its quantile function. Furthermore,
we study the impact of empirical moments and large losses on the empirical bootstrap
capital at the 99.9% confidence level.
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1 INTRODUCTION

A compound Poisson distribution is the sum of independent and identically distributed
random variables over a count variable that follows a Poisson distribution. Generally,
its distribution is not tractable. However, it has many practical applications that require
the estimation of the quantile function at a high percentile, eg, the 99.9th percentile.
Without loss of generality, this paper focuses on its application to operational risk.

Operational risk is defined by the Basel Committee on Banking Supervision as
follows:

The risk of loss resulting from inadequate and failed internal processes, people or
systems or from external events. This definition includes legal risk, but excludes
strategic and reputational risk.

The Basel II framework introduced the advanced measurement approach (AMA) to
calculate regulatory capital for operational risk. AMA is a risk-sensitive methodology
based on sophisticated mathematical tools. It offers a flexible framework to measure
risk exposure and, therefore, to implement risk measurement and reporting tools.

AMA-regulated financial institutions are expected to collect and analyze loss data at
a certain level of granularity to capture the idiosyncratic risks reflecting the complex-
ity of their business activities. The most popular modeling concept by far is the loss
distribution approach (LDA). This is mainly based on two parametric distributions:
a single loss (or severity) distribution, and an annual frequency distribution of loss
events, from which an annual aggregate loss distribution is then inferred. As opera-
tional loss data usually contains outliers, heavy-tailed distributions are often chosen to
model loss severity. Calibrating these distributions to estimate the percentiles sought
for regulatory capital thus becomes a challenge (Cope et al 2009), necessitating the
use of benchmarks.

The empirical bootstrap distribution is widely used to benchmark the continuous
compound distribution. It approximates the single loss distribution by the empirical
distribution function arising from a sample. We investigate the mechanics of the
empirical aggregate loss bootstrap distribution and suggest different approximations
of its quantile function. Furthermore, we study the impact of empirical moments
and large losses in the context of the empirical bootstrap measure of operational
risk capital. Historical data is plagued with large outliers, which dominate the upper
percentiles of the aggregate loss percentiles used to benchmark capital results. This
paper offers a better understanding of the relationship between outlier losses and the
empirical bootstrap distribution, particularly at high percentiles.

The paper is organized as follows. Section 2 defines the problem that we tackle, and
introduces some notation. Section 3 presents a simple and intuitive analytical approx-
imation of the quantile function of the empirical aggregate loss bootstrap distribution.
Section 4 develops the multinomial representation of total loss random variable. This
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Approximations of the total aggregate loss quantile function 25

representation is the key to computing various approximations (Poisson approxima-
tion, Cornish–Fisher expansion) that are developed in Section 5. We investigate their
numerical efficiency in Section 6. Section 7 is devoted to the binomial approximation.
Section 8 extends the analytic approximation developed in Section 3 to continuous
distributions. Section 9 concludes.

2 DEFINITION OF THE PROBLEM

Consider an ordered sample of single losses,

L D fx1; x2; : : : ; xn DM g such that xi 6 xj for all i 6 j:

The aggregate loss is defined as

T D

f .t/X
iD1

si ; (2.1)

where si is randomly sampled with replacement from L. Each individual loss xi has
a probability weight of being drawn equal to 1=n. f .t/ is the frequency of loss over
t years. Throughout this paper, it is assumed to follow a Poisson distribution with
intensity �.1 Without loss of generality, we normalize the loss data sample L by its
largest loss M :

QL D f Qx1; Qx2; : : : ; Qxn D 1g; Qxi D
xi

M
:

Define

Q�k D
1

k

kX
iD1

Qxi :

When k D n, Q�n is the sample mean of QL. The normalized aggregate loss is

QT D
T

M
D

fX
iD1

Qsi ;

where Qsi is randomly sampled with replacement from QL.
Let us denote the cumulative density function (CDF) of QT by F . We are interested

in the approximation of the quantile function QT˛ of QT , with a focus on samples with
very large severity loss:

QT˛ D min

�
x D

fX
iD1

Qsi W F.x/ > ˛
�
:

1 The time horizon, t , is assumed to be constant. Hereafter, for clarity, we omit it.
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FIGURE 1 Histogram of an empirical aggregate loss bootstrap distribution.
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M is the largest single loss. ˇ˛ is defined in Section 3.3. In this example, ˛ is equal to 99.9%. As expected, the
empirical bootstrap analytic (EBA) approximation (Section 3) is efficient for type I samples. The binomial approxi-
mation (Section 7) estimates the empirical bootstrap distribution given thatM appears precisely ˇ˛ times (with the
remainder due to the contribution of smaller losses).

Approximating the quantile function QT˛ is challenging for a high percentile, ˛.
In fact, QT is a discrete distribution that exhibits clustering around multiples of large
losses at the tail. The clustering is perceptible in the presence of extremely large losses
(see Figure 1).

3 EMPIRICAL BOOTSTRAP ANALYTIC APPROXIMATION

We present various theoretical descriptions of the empirical bootstrap, first exploring
some special boundary cases for which a precise formula exists and then developing
a more general framework leading to multiple approximation formulas.

3.1 All losses are identical

The first extreme case is when all losses are equal to the maximum, ie, Qx1 D � � � D
Qxn D 1. In this situation, the aggregate loss distribution, QT , is identical to the frequency
random variable, f . Indeed,

QT D

fX
iD1

Qsi D

fX
iD1

1 D f: (3.1)
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Therefore,

QT˛ D f˛;

where

f˛ D F
�1
� .˛/ (3.2)

and F �1
�
.�/ is the inverse CDF of the Poisson distribution with intensity �.

3.2 One (or more) extremely large loss(es)

We consider the case where there is a single, isolated largest loss, with all other
losses being much smaller. The extreme example corresponds to Qx1 D Qx2 D � � � D
Qxn�1 D 0 and Qxn D 1.2 Let us generalize this situation slightly to cover the case of
l identical largest losses and n � l trivial losses, ie, Qx1 D Qx2 D � � � D Qxn�l D 0 and
Qxn�lC1 D � � � D Qxn D 1. Note that variable QT becomes a counting variable for the
number of times the maximal loss is sampled in each compound draw. This is similar
to (3.1); however, the expected count will be adjusted by the reduced probability of
choosing a largest loss. A candidate for the resulting counting variable is

QT � Poisson

�
�
l

n

�
: (3.3)

We now show that this is precisely the case. First note that the si are Bernoulli trials
with probability of success equal to l=n. Therefore, we have

QT D

fX
iD1

Qsi H) QT jf � binom

�
f;
l

n

�
:

The equivalence in (3.3) is due to the following lemma.

Lemma 3.1 Let f � Poisson.�/ and suppose QT 2 f0; 1; 2; : : : g is a discrete
random variable such that the conditional distribution . QT j f D m/ � binom.m; �/.

Then,

QT � Poisson.��/: (3.4)

2 We are generally interested in the problem when all losses are strictly greater than zero; however,
this can be thought of as the limiting case characterizing M � xn�1.
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Proof This is a well-known result that can be shown by simply computing the
probability mass function for QT at k 2 f0; 1; 2; : : : g:

Pr. QT D k/ D
1X
mDk

Pr. QT D k j f D m/Pr.f D m/

D

1X
mDk

 
m

k

!
�k.1 � �/m�ke��

�m

mŠ

D e��
.��/k

kŠ

1X
mDk

Œ�.1 � �/�m�k

.m � k/Š

D e��
.��/k

kŠ

1X
mD0

Œ�.1 � �/�m

mŠ

D e��
.��/k

kŠ
e�.1��/

D e���
.��/k

kŠ
:

�

The result for the first example (ie, for l D n) can be seen as a consequence of this
when � D 1.

3.3 Analytic approximation

A key observation from the previous examples is that in each of these special cases
the mean of the normalized data equals the probability of drawing a largest loss in a
single trial. That is,

Q�n D
l

n
D Pr.Qsi D 1/:

Q�n can be written as

Q�n D
1

n

n�lX
iD1

Qxi C
l

n
; 0 6 Qxi < 1:

Thus, Q�n 2 Œ1=n; 1� and attains its minimum and maximum values in the extreme
cases corresponding to l D 1 and l D n, respectively.Therefore, Q�n is a generalization
of the probability of selecting a maximal loss in a single random draw. Given this, a
candidate distribution for QT in the general case, motivated by (3.4), is

QT � Poisson.� Q�n/:
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This approximation has a few shortcomings: the first being that it is integer valued;
the second is (as we shall see) that, while it does capture the correct mean, it overes-
timates the variance of the true distribution. We discuss these issues in later sections,
where we also propose solutions. Meanwhile, we suggest another approximation of
QT˛ , which is our main focus in the remainder of the paper.

For a fixed percentile level, ˛, simulation experiments (see, for example, Figure 3)
suggest a linear relationship exists between QT˛ and Q�n. Consequently, we linearly
interpolate between the extreme values of Q�n and their corresponding known values
of QT˛ (corresponding to the l D 1 and l D n boundary cases discussed above). For
the l D n case, the value of QT˛ is given by (3.2); at the other extreme, l D 1, it is
equal to the percentile, ˛, of the variable

ˇ � Poisson

�
�

n

�
:

Then, the line between .1=n; ˇ˛/ and .1; f˛/ is given by

n

n � 1

�
Q�n �

1

n

�
.f˛ � ˇ˛/C ˇ˛:

We define

Q�n�1 D
n

n � 1

�
Q�n �

1

n

�
D

1

n � 1

n�1X
iD1

Qxi ;

and then write the approximation to QT˛ as

QT˛ � Q�n�1.f˛ � ˇ˛/C ˇ˛:

Rewriting in terms of the nonnormalized distribution, L, we obtain

T˛ � �n�1.f˛ � ˇ˛/C ˇ˛M; (3.5)

where �n�1 D Q�n�1M (see Figure 1).

3.4 Remarks

The development of (3.5) implicitly relies on ˇ˛ > 0, corresponding to

˛ > F�=n.1/: (3.6)

This is generally true for high ˛ and when the number of data points is less than
�=.1 � ˛/.3 Otherwise, it turns out that the maximum loss is actually too rare to

3 For example, when ˛ D 99% and � D 10, ˇ˛ > 0 when the number of data points is less than
10 � 1000 D 10 000.
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TABLE 1 Coefficient of the maximum loss (ˇ˛) for various percentiles (˛) and numbers
of time periods (N ).

˛‚ …„ ƒ
N 99% 99.9%

5 2 3
6 2 2
7 1 2

23 1 1
99 1 1

100 0 1
999 0 1

1000 0 0

contribute to the ˛ percentile of the aggregate loss distribution. ˇ˛ appears as the
coefficient of the maximum loss, M , in (3.5) and is defined as

ˇ˛ D F
�1
�=n.˛/: (3.7)

Note that if � D n=N , whereN is the number of time periods over which the sample
was collected, then we have

ˇ˛ D F
�1
1=N .˛/

and so this can be directly linked to the number of data collection periods involved in
obtaining the sample. ˇ˛ is given for various values of ˛ and N in Table 1.

Such information could be used to adjust empirical bootstrap estimates. For exam-
ple, after collecting five periods of data, we might have reason to believe that the largest
observed loss has an actual frequency of one in ten years rather than the observed
one in five. From this, we conclude that a better empirical bootstrap analytic (EBA)
estimate of the 99th percentile is obtained by adjusting the ˇ˛ parameter (ie, from 2

to 1).

4 MULTINOMIAL REPRESENTATION OF THE TOTAL LOSS
DISTRIBUTION

In this section, we look at the distribution that governs the count, f i , of a particular
point, Qxi , conditional on the total annual frequency, f . We have

nX
iD1

f i D f; f � Poisson.�/:
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The experiment can be seen as drawing f independent trials from n categories. Each
trial consists of choosing a loss with probability 1=n. f i is the number of trials
in which xi is drawn. Therefore, .f 1; : : : ; f n/ has a multinomial distribution with
index f and parameter .1=n; : : : ; 1=n/. Steel (1953) shows that, conditional on f ,
a multinomial distribution is equivalent to the number of successes observed in n
independent Poisson distributions with intensities �i , i D 1; : : : ; n. �i is defined as
the probability weight assigned to Qxi multiplied by the total intensity,�. Consequently,

f i � Poisson.�i /; �i D
�

n
:

The total loss random variable can be written as

QT D

nX
iD1

f i Qxi : (4.1)

Corollary 4.1 QT is a linear combination of n independent Poisson distributions
with intensities �i D �=n, i D 1; : : : ; n. It has mean N�1, variance N�2 and third
central moment N�3, where

N�1 D � Q�n;

N�2 D EŒ. QT � N�1/
2� D

�

n

nX
iD1

Qx2i ;

N�3 D EŒ. QT � N�1/
3� D

�

n

nX
iD1

Qx3i :

Corollary 4.1 uses the fact that a Poisson distribution has its first three central
moments equal to its intensity. As Qx 6 1, we have

N�2 6 N�1:

5 APPROXIMATION OF THE TOTAL LOSS DISTRIBUTION

5.1 Poisson approximation

Corollary 4.1 shows that QT is a linear combination of independent Poisson distribu-
tions. QT follows a Poisson distribution if and only if Qxi D 1 for all i D 1; : : : ; n, ie,
Q�n D 1. Otherwise, N�1 > N�2, as there exists at least a normalized loss that is strictly
less than 1. We suggest linearly mapping QT into another random variable, Y , which
has equal first and second central moments. Define

Y D
N�1

N�2
QT :
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FIGURE 2 Extension of the Poisson distribution over the positive real line.
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Y has the same mean and variance, equal to

�? D
N�21
N�2
:

We approximate the Y distribution by an extension over the positive real line of a
Poisson distribution with parameter �?. The Poisson distribution CDF is a stepwise
function, which can be defined as

F�?.x/ D
� .bx C 1c; �?/

bxcŠ
for all x > 0; (5.1)

where � .�; �/ is the incomplete gamma function and b�c is the floor function. We
extend F�? by a smooth envelope that matches its values over the natural numbers
(see Figure 2). A straightforward generalization is to remove the floor function from
(5.1) and replace the factorial by the gamma function, � .�/:

x 7!
� .x C 1; �?/

� .x C 1/
for all x > 0; (5.2)

However, CDF (5.2) can be inaccurate on the corners. Therefore, we suggest the
following generalization:

x 7! 1 �
�.x C 1; �?/

� .x C 1/
;
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where �.�; �/ is the lower incomplete gamma function. In fact, CDF (5.1) can be written
as a function of the �2-distribution:

x 7! Pr.�22.xC1/ > 2�
?/

(see Johnson et al (2005) for more details).

Proposition 5.1 The quantile function of QT can be approximated as follows:

QT˛ �
N�2

N�1
.G�1P .˛; �?/C 1/;

where

GP W <C � <C ! Œ0; 1�;

.x; y/ 7! 1 �
�.x C 1; y/

� .x C 1/
:

5.2 Cornish–Fisher expansion

The Poisson approximation matches the first two moments of QT . We suggest approx-
imating the discrete quantile function of the aggregate distribution by a continuous
function using the Cornish–Fisher expansion. The latter is based on the availabil-
ity of cumulants. We present the formula using the first three moments provided in
Corollary 4.1. The quantile function is approximated by

QT˛ � N�1 C
p
N�2ı.˛/;

ı.˛/ D ˚�1.˛/C
N�3

N�
3=2
2

˚�1.˛/2 � 1

6
:

We provide a higher-order approximation of the Cornish–Fisher expansion in Ap-
pendix A online.

5.3 Panjer recursion

Panjer (1981) suggests an algorithm to compute the compound Poisson distribution
using a recursive relationship between the probabilities of the number of losses that
occur in the same time interval. The interval Œ Qx1; Qxn� is split intom equispaced points.
Let us denote the step size by	 Qx, and grid points by x?i , i D 1; : : : ; m, with x?1 D Qx1,
x?m D Qxn and x?i D Qx1C .i � 1/	 Qx. Each point x?i is assigned a probability weight,
pi . The normalized aggregate loss QT is approximated by

QTn � x
?
0 CDm	 Qx;

Dm D

mX
iD1

if ?i ; x?0 D Qx1 �	 Qx;
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where f ?i has a Poisson distribution with intensity �pi . A simple probability scheme
is to assign

p1 D
1

n
;

pi D
f# Qxj 2 .x?i�1; x

?
i �; j D 1; : : : ; ng

n
; i D 2; : : : ; m:

The probability mass function g.�/ ofDm is computed using the following recursion:

g.0/ D e��;

g.y/ D
�

y

mX
iD1

ipig.y � i/ for all y D 1; 2; : : : :

The quantile function of Dm, F �1Dm.�/, can be computed as follows:

F �1Dm.p/ D min

�
x; x D 1; : : : ;

xX
jD0

g.j / > p
�
:

Therefore,
QT˛ � x

?
0 C F

�1
Dm
.˛/	 Qx:

Different probability schemes are proposed in the literature, eg, methods of matching
moments (Gerber 1982). The choice of 	 Qx and pi , i D 1; : : : ; m, is of paramount
importance to obtain an efficient Panjer approximation.

6 NUMERICAL RESULTS

We compare the efficiency of each approximation with respect to a Monte Carlo
estimate using 1000 000 simulations. Even though the Monte Carlo simulation embeds
statistical errors, it remains a popular and reliable benchmark to estimate the quantile
function.

We generate three sets of 5000 samples with sample size 100, 500 and 1000,
respectively, from a lognormal distribution with an associated normal distribution of
mean 0 and standard deviation 2. The losses are assumed to be observed in a five-year
(� D n=5) or ten-year (� D n=10) time window.

We focus on estimating the 99.9th percentile for different frequencies and sample
sizes. We classify samples into three categories.

Type I: sample has an extremely large loss (ie, Q�n � 1=n).

Type II: all losses have the same order of magnitude (ie, Q�n � 1; see Section 3.1).

Type III: otherwise.
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TABLE 2 Average percentage deviation from Monte Carlo estimates for the 15 000
generated samples.

˛ (%) EBA (%) Poisson (%) Fisher 3 (%) Fisher 5 (%) Panjer (%)

95 �1(8) 3(6) 1(3) 0(3) 5(4)
97.5 �10(7) 2(7) 4(6) 3(6) 5(4)
99.5 �13(11) �4(7) 4(8) 4(13) 4(3)
99.9 1(7) �9(5) 4(4) 4(13) 3(2)

Standard deviations are reported in parentheses. The collection periods are five and ten years.

Operational risk samples are usually of type I or III, as they generally contain at
least one outlier. Therefore, we hereafter focus our numerical investigation on these
two types.

Figure 3 compares EBA to Monte Carlo. By construction, EBA is efficient for
sample types I and II. It is close to Monte Carlo elsewhere. Figure 4 depicts the
Poisson approximation results. It behaves poorly for category I. Otherwise, it provides
relatively efficient estimates. Cornish–Fisher approximates well the quantile function
using three cumulants (see Figure 5). Expansion to five cumulants overestimates
the 99.9th percentile for sample type I (see Figure 6). The empirical aggregate loss
distribution is a discrete distribution, and it is fairly approximated with a continuous
distribution by matching the first three cumulants. Figure 7 depicts the Panjer recursion
form D 1000. Panjer recursion is a numerical procedure that provides efficient results
if it is well parameterized.

Table 2 reports the average percentage deviation from the Monte Carlo estimates
for the 15 000 samples as well as their standard deviations for the 95th, 97.5th, 99.5th
and 99.9th percentiles. On average, EBA seems to slightly underestimate the quantile
function for low percentiles. Otherwise, other approximations behave well on average,
except for the Poisson when estimating the 99.9th percentile.

7 BINOMIAL APPROXIMATION FOR SAMPLES WITH A SINGLE
LARGE LOSS

We focus on the distribution of QT in the presence of an extremely large loss in the
sample. We isolate the largest loss in (4.1):

QT D

n�1X
iD1

f i Qxi C f
n Qxn: (7.1)

At a high ˛, the largest loss is expected to appear at least ˇ˛ times (see Figure 1).
Therefore, f n is left-truncated to exclude 0; : : : ; ˇ˛ � 1 as a possible outcome. Let
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FIGURE 3 Empirical bootstrap analytic (EBA) approximation compared with Monte Carlo
simulation at the 99.9th percentile.
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us denote its left-truncated distribution by f n?. The probability mass function is

Pr.f n? D j / D h.j /

�
1 �
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iD0

h.i/

��1
;

where

h.i/ D
e��=n.�=n/i

i Š
:
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FIGURE 4 Poisson approximation compared with Monte Carlo simulation at the 99.9th
percentile.
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FIGURE 5 Cornish–Fisher approximation using three cumulants compared with Monte
Carlo simulation at the 99.9th percentile.
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Corollary 7.1 Conditional on M being drawn ˇ˛ times, QT has mean N�01 and
variance N�02, where

N�01 D
n � 1

n
� Q�n�1 C 
1 Qxn;

N�02 D
�

n

n�1X
iD1

Qx2i C 
2 Qx
2
n:
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FIGURE 6 Cornish–Fisher approximation using five cumulants compared with Monte
Carlo simulation at the 99.9th percentile.
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Left-truncation increases the mean and reduces the variance:


2 6
�

n
6 
1:

Therefore, we have

N�02 6 N�2 6 N�1 6 N�01:
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FIGURE 7 Panjer recursion compared with Monte Carlo simulation at the 99.9th percentile.
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We approximate the distribution of QT by an extension over the positive real line of
the binomial distribution with parameters .r?; p?/,

r? D

�
N�01
p?

�
;

p? D 1 �
N�02
N�01
;
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where d�e is the ceiling function. The Camp–Paulson approximation links the binomial
distribution CDF, Fp?;r? , to the standard normal distribution CDF, ˚ :

Fp?;r?.x/ � ˚.W /; (7.2)

W D �
Y

3
p
.Z/

; (7.3)

Y D

�
� � xp?

.x C 1/.1 � p?/

	1=3�
9 �

p?

� � p?x

�
� 9C

1

x C 1
; (7.4)

Z D

�
� � xp?

.x C 1/.1 � p?/

	2=3�
p?

� � p?x

�
C

1

x C 1
; (7.5)

� D
N�01
p?
: (7.6)

Based on Johnson et al (2005), its maximum absolute error is less than 0:007. N�01.1�
p?//�1=2.

Proposition 7.2 The quantile function of QT can be approximated as follows:

QT˛ � ˚
�1.W /;

where W is given through (7.3)–(7.6). ˚�1.�/ is the standard normal inverse CDF.

Figure 8 compares the approximation with Monte Carlo when Q�n is in the neigh-
borhood of 1=n (ie, type I). The numerical investigation shows that the binomial
approximation of Proposition 7.2 is decent at a high ˛.

8 EXTENSION TO CONTINUOUS DISTRIBUTIONS

The extension of the EBA to the continuous case is motivated by the fact that con-
tinuous distributions may be approximated by discretizations, to which the EBA is
then applicable. However, better approximations correspond to a larger sample size,
n, and for large enough n the constraint on ˛ given by (3.6) is violated; moreover, the
largest loss is unbounded as n increases. To remedy this, we replace the largest loss
with that expected to occur at least once in t˛ D 1=.1 � ˛/, or on average once in
�t˛ D �=.1 � ˛/ losses. We define

M˛? D sup

�
x

ˇ̌̌
ˇ P.X > x/ >

1

�=.1 � ˛/

�

D F �1
�
1 �

1 � ˛

�

�
D F �1.˛?/;
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FIGURE 8 Binomial approximation compared with Monte Carlo simulation at the 99.9th
percentile when the sample QL contains a very large loss.
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where

˛? D 1 �
1 � ˛

�
:

In our context,M˛? is the analog of the largest lossM in the discrete case. We propose
the following formula as an approximation of the quantile function in the continuous
case:

EBAc D �˛?.f
c
˛ � ˇ

c
˛/C ˇ

c
˛M˛? ; (8.1)
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TABLE 3 Minimum, average and maximum percentage deviation of the extension formula,
EBAc, from the Monte Carlo estimate for � D 100.

˛‚ …„ ƒ
95% 97.5% 99% 99.5% 99.9%

Minimum (%) 2.0 1.2 �1.4 �3.4 �1.4
Average (%) 3.4 2.1 0.7 0.0 2.0
Maximum (%) 4.8 3.6 4.8 6.1 9.6

TABLE 4 Minimum, average and maximum percentage deviation of the extension formula,
EBAc, from the Monte Carlo estimate for � D 1000.

˛‚ …„ ƒ
95% 97.5% 99% 99.5% 99.9%

Minimum (%) �1.5 �1.4 �1.2 �1.2 �5.0
Average (%) 0.3 �0.2 0.1 0.8 �2.4
Maximum (%) 2.7 1.3 1.1 2.0 1.0

where �˛? is the conditional mean below M˛? ,

�˛? D
1

˛?

Z M˛?

0

x dF.x/:

f c
˛ (respectively, ˇc

˛) is the equivalent of f˛ (respectively, ˇ˛) in (3.5) and is
computed using the extension over the positive line of the Poisson distribution:

f c
˛ D G

�1
P .˛; �/C 1; (8.2)

ˇc
˛ D G

�1
P .˛; 1 � ˛/C 1; (8.3)

where GP.�; �/ is given in Proposition 5.1. As previously mentioned, ˇc
˛ represents

the number of times the large loss, in our case M˛? , appears in t˛ years. Thus, its
intensity in (8.3) is 1 � ˛.

We investigate the efficiency of this extension to the lognormal distribution with an
associated normal distribution of mean 0 and a standard deviation varying from 1 to 6
with a 0.05 step increase. Tables 3 and 4 report the minimum, average and maximum
percentage deviations from Monte Carlo simulation estimates for frequencies 100 and
1000. The same statistics are reported for the single loss approximation with mean
correction (Böcker and Sprittulla 2006) in Tables 5 and 6:

SLA.˛/ D F �1.˛?/C �.� � 1/; (8.4)
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TABLE 5 Minimum, average and maximum percentage deviation of SLA from the Monte
Carlo estimate for � D 100.

˛‚ …„ ƒ
95% 97.5% 99% 99.5% 99.9%

Minimum (%) �10.3 �11.7 �12.7 �13.2 �12.6
Average (%) 155.7 52.8 11.8 2.2 �0.0
Maximum (%) 1707.5 541.8 126.1 40.9 6.8

TABLE 6 Minimum, average and maximum percentage deviation of SLA from the Monte
Carlo estimate for � D 1000.

˛‚ …„ ƒ
95% 97.5% 99% 99.5% 99.9%

Minimum (%) �5.5 �6.6 �7.4 �7.8 �8.8
Average (%) 52.1 20.2 5.5 2.2 �3.6
Maximum (%) 449 168.5 49.0 20.9 �0.3

where � is the unconditional mean. The extension is more accurate than the SLA for
the 99th percentile and below. Its efficiency is comparable with the SLA for higher
percentiles. Figure 9 compares the EBA extension to Monte Carlo and SLA for a
lognormal distribution with mean 0 and standard variation 2 at various percentiles.
The EBAc is efficient at low percentiles, and comparable with Monte Carlo estimates.
As expected, the SLA formula behaves poorly at low percentiles. We recall that SLA
is asymptotically efficient for subexponential distributions.

9 CONCLUSIONS

We investigated the mechanics of the empirical aggregate loss bootstrap distribution
and show that it can be represented as a linear combination of independent Poisson
distributions. We suggest different approximations of its quantile function for a high
percentile.

(a) Empirical bootstrap analytic (EBA): this is an intuitive analytical approxima-
tion derived based on extreme cases. By construction, it is efficient when the
sample has an extremely large loss (type I) or all losses have the same order of
magnitude (type II). It remains close to the Monte Carlo estimates for samples
of type III.
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FIGURE 9 EBAc formula (8.1) compared with SLA and Monte Carlo simulation for a
lognormal distribution with mean 0 and standard deviation 2 at various percentiles.

0

2000

4000

6000

8000

10 20 30 40 50 60 70 80 90 100

×
 1

04

%

10 20 30 40 50 60 70 80 90 100
%

λ = 1000

λ = 100

2.5

2.0

1.5

0.5

1.0

Monte Carlo Extension of EBA SLA

(b) Poisson approximation: this matches the first and second central moments of
the total aggregate loss distribution and smooths out the Poisson cumulative
density function. It behaves poorly in type I, and provides relatively efficient
estimates for other samples.

(c) Cornish–Fisher expansion: this approximates the aggregate loss bootstrap dis-
tribution, which is a discrete distribution, by a continuous one using its cumu-
lants. It approximates well the quantile function using three cumulants in all
three categories.

(d) Panjer recursion: this is a numerical procedure whose efficiency depends on
its parameterization. An appropriate choice of equispaced points and their
probability mass weights results in an efficient approximation.

(e) Binomial approximation: this approximates the aggregate loss bootstrap dis-
tribution in the presence of an extremely large loss in the sample (type I). The
distribution is approximated by an extension over the real line of a binomial
distribution. It provides an efficient estimate of the quantile function for a high
percentile.
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We also presented a possible extension of the EBA to the continuous case.At high per-
centiles, numerical investigation shows that its efficiency is comparable with the single
loss approximation, when the severity distribution can be efficiently approximated by
the empirical distribution of a finite sample. It is also efficient at approximating low
percentiles (see Figure 9).

The empirical bootstrap distribution has been of great interest to operational risk
practitioners for benchmarking capital results and stress testing exercises. A deeper
understanding of how outlier losses and simple statistics of the loss sample affect
the bootstrap distribution, particularly at high percentiles, enhances its utility as a
benchmark.
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