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ABSTRACT

We propose and investigate a valuation model for the income of selling tradeable
green certificates (TGCs) in the Swedish–Norwegian market, formulated as a sin-
gular stochastic control problem. Our model takes into account the production rate
of renewable energy from a “typical” plant, the price of TGCs and the cumulative
amount of certificates sold. We assume that the production rate has a dynamics given
by an exponential Ornstein–Uhlenbeck process, and the logarithmic TGC price has a
dynamics given by a Lévy process. For this class of dynamics, we find optimal deci-
sion rules for the state variables and a closed-form solution to the control problem.
A case study of ICAP prices and wind production data from Denmark backs up our
model choice and shows the relevance of this pricing approach.
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1 INTRODUCTION

The need for renewable energy has increased a lot in the last decade as the awareness
of climate change has increased. The renewable energy technologies are often very
expensive and require external financial support to be realized. An alternative to direct
government funding is the development of a market for green certificates, also called
tradeable green certificates (TGCs). The certificates are purely financial objects used
to reach a desirable production capacity of electricity from renewable resources.
The idea is that the end consumers finance the renewable energy technologies by
purchasing TGCs.

The producer of “green” electricity has the right to sell one certificate per unit
produced, while the retail electricity providers (eg, the consumers in this market)
are obliged to cover their share of electricity consumption from renewable sources.
This is done by purchasing green certificates. The producer is given a number of
certificates by the government, based on expected production, to sell in the market. In
this way a market-based subsidy is introduced, creating a direct link between power
consumption and “green” energy generation.

The Swedish electricity certificate market was established in 2003, and Norway
enrolled in the market in 2012. Before the common market between Sweden and
Norway, 13.3 TWh was financed via the Swedish certificate market. The common
goal was to increase renewable electricity production by 26.4 TWh between 2012 and
2020, shared equally between Sweden and Norway. The market will continue until
2035, with a target of completely financing 198 TWh of new renewable electricity
production (NVE 2013). For comparison, Norway and Sweden produced a total of
282 TWh in 2014.

The aim of this paper is to find the value of an income stream obtained by selling
certificates in the particular case of the Swedish–Norwegian green certificate market.
By observing the market price of the certificates, the holder can maximize their
income stream by finding the best amount to sell at the best time. We formulate the
optimization problem as a finite-horizon singular stochastic control problem, with
the state variables being the certificate spot price, the production rate of power from
renewable sources and the number of certificates sold. We allow certificates to be
sold in small quantities over time, or all at once, which includes singular stochastic
controls in our optimization problem.

Since one of the aims of TGCs is to cover the producer’s losses due to the high
installation costs of renewable energy technologies, the consumer pays a higher price
for electricity, namely the sum of the market prices for electricity and TGCs. Both
the electricity price and the TGC price will be driven by the demand for power, and
we can expect a dependency between the two.
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In stochastic modeling of financial prices, exponential Lévy processes are com-
monly used (see Cont and Tankov 2004; Schoutens 2003). Such processes provide a
great flexibility in capturing the stylized features of financial price data, such as heavy
tails, skewness and kurtosis in the distribution of prices. To obtain a flexible model
for the TGC price, we will assume that it follows an exponential Lévy process, where
logarithmic returns are modeled by the normal inverse Gaussian (NIG) distribution
(see Barndorff-Nielsen (1998) for a financial application of the NIG distribution). As
it turns out, this model will fit observed TGC price data rather well, as we will see
in an empirical case study. We mention in passing that Lévy processes are frequently
used in modeling electricity prices (see Benth et al 2008).

The production rate is highly influenced by weather factors such as rain, sunshine
and wind, given renewable power generators such as hydroelectric power, photo-
voltaic cells and wind turbines. It is reasonable to assume that these weather factors
are stationary, varying around some seasonal mean level. To describe the statistical
features of wind speed dynamics in discrete time, the most commonly used models are
autoregressive moving-average (ARMA) time series models. These have also been
used for modeling time series for temperature. The analog for continuous time is the
continuous-time ARMA (CARMA) process. Applications of these, and other related
weather models, in the weather market can be found in Benth and Saltyte Benth
(2013) and the references therein. In particular, Benth and Saltyte Benth suggest a
CARMA model for temperature and an exponential CARMA model for wind speed.
Motivated by this, we will assume that the production rate follows an exponential
Ornstein–Uhlenbeck (OU) process. The OU process is stationary, and a special case
of the more general CARMA processes. However, it is also Markovian, which is
theoretically convenient when analyzing our optimization problem.

Previous work relating to green certificates markets is rather scarce. The term
paper by Goldstein (2010) gives an overview of the market and its implications from
a political and economical point of view, as well as a discussion on the equilibrium
price and the Swedish–Norwegian market. There is a stream of literature on price
determination in the TGC market, including fundamental equilibrium and agent-based
models (see, for example,Amundsen and Mortensen 2001;Aune et al 2012; Unger and
Ahlgren 2005; Wolfgang et al 2015). The impact of regulatory changes on the price
volatility of TGC is analyzed in Fagiani and Hakvoort (2014). Frogner and Hustveit
(2015) study green investment decisions using dynamic programming. The related
solar renewable energy certificates (SREC) market in the United States is investigated
by Coulon et al (2015), who focus on understanding the price dynamics and propose a
structural model for renewable energy certificates that is able to incorporate important
features.

To the best of our knowledge, there are no papers discussing how a producer should
manage TGCs optimally in a continuous-time market context. We provide a general
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framework for a valuation model for selling TGCs optimally, as well as a general
model for the underlying TGC price dynamics.A closed-form solution to the valuation
model is provided and explicitly calculated when the logarithmic TGC price process
is NIG distributed. We also conduct an empirical analysis, which demonstrates that
our proposed model and the NIG distribution are very suitable for work on price
dynamics. In this case, we also calculate the numerical value of the contract based on
the empirical data.

We also highlight the flexibility of the valuation model, as it can be used for any
exponential Lévy process with finite moments to model the TGC price dynamic, yet
remains analytically tractable.

The paper is organized as follows. In Section 2, we give the framework for our
valuation model, and introduce the dynamics of the production rate. In Section 3,
we introduce the exponential Lévy process for the TGC price dynamics and derive a
Hamilton–Jacobi–Bellman (HJB) equation for the valuation problem. We then derive
criteria for the optimal strategy, and show the optimality via a verification theorem.
The main result of the paper gives a rather explicit solution to the valuation model. In
Section 4, we conduct a case study followed by an explicit numerical calculation of
the optimal value. For the numerical part we conduct an empirical analysis of TGC
spot price data. Proofs and intermediate results are collected in Section 5. We offer
some conclusions in Section 6.

2 THE SINGULAR STOCHASTIC CONTROL PROBLEM

Let .˝;F ;F;P/, where F D fFtgt>0, be a complete filtered probability space
satisfying the usual conditions. We denote by Ft WD fX.u/; u 6 tg the � -algebra
generated by the state process X.u/. Also, we assume that the state process has the
Markov property.

We formulate as follows the singular stochastic control problem for optimal man-
agement of the green certificates held by the producer. LetX.t/ be the price of a green
certificate at time t , and denote byP.t/ the accumulated production of “clean power”
from a producer entitled to receive certificates. We introduce R.t/ as the production
rate at time t , and thus

dP.t/ D R.t/ dt:

Furthermore, we denote by A.t/ the cumulative number of certificates sold up to
time t .

The market is organized such that the producer of “clean power” is granted a number
of certificates proportional to the production on a regular basis. We approximate this as
a continuous income of certificates proportional to the production rateR.t/. Hence, at
time t we have cP.t/ accumulated certificates obtained from production, with c > 0
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being the proportionality constant. These certificates can, once received, be sold at
any later time. Our selling strategy is modeled by the control A.t/. We assume the
following conditions hold on the set of controls.

(C) A is a positive, nondecreasing and adapted stochastic process, with paths being
right continuous with left limits. We let A.0�/ D 0. In addition, A.t/ 6
cP.t/ for all t 6 T . We call such controls “admissible”, and denote the set of
admissible As by A.

Note that T is a finite trading horizon, typically the total duration of the certificate
market. The condition A.t/ 6 cP.t/ prohibits short selling of certificates.

We introduce the process Z.t/, which measures the number of certificates held at
time t , ie,

Z.t/ D cP.t/ � A.t/:

We observe that, for any A 2 A, it holds that Z.t/ > 0 for all t 6 T .
With the above notation, we have the state variable

X.t/ D .X.t/; R.t/; Z.t//

controlled by A 2 A. The expected value of the income flow from selling certificates
becomes

J.t; x; %; z W A/ D E

� Z T

t

e�r.s�t/X.s/ dA.s/

ˇ̌
ˇ̌ X.t�/ D .x; %; z/

�

for anyA 2 A.t/, where A.t/ is the set of admissible controls and time starts at t . We
have denoted by r > 0 the constant discount rate. Note that, as A is monotonically
nondecreasing, it is of finite variation on the interval Œt; T �. Hence, the integral with
respect to A inside the expectation operator above is interpreted in the Lebesgue–
Stieltjes sense. Our stochastic control problem is now to find an optimal OA 2 A.t/

such that

V.t; x; %; z/ WD sup
A2A.t/

J.t; x; %; z W A/ D J.t; x; %; z W OA/: (2.1)

We analyze this singular stochastic control problem by the method of dynamic
programming.

We observe that if t D T , the optimal control is to sell all the certificates that the
producer holds. Hence, ifZ.T�/ D z, the optimal control is� OA.T / D z. The value
of selling these certificates is then given by

V.T; x; %; z/ D EŒX.T /� OA.T / j X.T�/ D .x; %; z/� D xz: (2.2)

This provides us with a terminal condition for the value function.
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Note that we set the optimization problem under the market probability P rather
than taking the expectation with respect to any risk-neutral probabilityQ. Indeed, in
mathematical finance, the reason for pricing derivatives by taking the expected payoff
with respect to a risk-neutral probability Q � P comes from the fact that we can
hedge the derivatives by the underlying asset. In our context, the producers have been
granted American-type options, where the underlyings are the TGC and production.
The production is an external variable that cannot be used for hedging in a financial
sense (we cannot “trade the wind”), whereas the spot market for TGCs is far from
functioning as a liquid financial market. The retailers purchase TGCs by need, and not
for speculative purposes. Furthermore, in our setup there is a short-selling constraint
that creates additional incompleteness in the market. Taking all these aspects into
consideration, we are in reality in a highly incomplete market. We have therefore
chosen to state the optimization problem under the market probabilityP , where r is a
discount factor not necessarily equal to the so-called risk-free interest rate. However,
we emphasize that it is rather simple to modify our analysis to accommodate a liquid
market situation by assuming a drift in the TGC price model (see, for example, Cont
and Tankov 2004). The change in the dynamics for the production rate under such a
change of probability is, on the other hand, still questionable even in a liquid TGC
market.

We will focus our optimal control problem on some particular classes of state
processes X and R of practical relevance and interest. As the production rate R
is highly influenced by weather factors, which are stationary, varying around some
seasonal mean level, a simple, yet natural model is to assume that the dynamics of R
follows an exponential OU process:

R.s/ D eU.s/; (2.3)

where U.s/ is a mean-reverting OU process driven by a Brownian motion:

dU.s/ D .� � ˛U.s// ds C �u dBu.s/; U.t/ D ln.R.t//:

Then the dynamics of R.s/ reads as

dR.s/ D aR.R.s//R.s/ dt C �uR.s/ dBu.s/; R.t/ D %;

where

aR.R.s// WD � � ˛ ln.R.s//C 1
2
�2u : (2.4)

The constants�, ˛ and �u denote the mean-reversion level, the rate of mean reversion
and the volatility of the processU.s/.Bu is a Brownian motion, where the superscript
u indicates that it is related to the processU.s/. The explicit solution toR.s/, starting
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at time t , is given by

R.s/ D exp

�
ln.R.t//e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//C

Z s

t

�ue�˛.s�v/ dBu.v/

�
:

(2.5)

In the next section, we specify the price process, X .

3 A PRICE MODEL FOR TGC AND DYNAMIC PROGRAMMING

In this section, we find a closed-form solution for the optimal value (2.1). We assume
the logarithmic price, denoted by Y , is a Lévy process with finite moments. The
production rate R.s/ is assumed to be an exponential OU process given by (2.5). As
a by-product, we also obtain the optimal strategy, ie, the optimal control. The result
is concluded in Theorem 3.8. We start by specifying the price model for X .

3.1 The TGC price model

Let
X.s/ D x exp.Y.s//;

where the dynamics of the Lévy process Y is given by

dY.v/ D � dv C �Y dBY .v/C
Z
j�j<1

� QN.dv; d�/C
Z
j�j>1

�N.dv; d�/; (3.1)

and BY is a Brownian motion correlated with Bu with correlation coefficient �.N is
a Poisson random measure with Lévy measure 	.d�/ as compensator. Furthermore,
assume that X has finite moments, ie, we suppose that the conditionZ

j�j>1
ekj�j	.d�/ <1 (3.2)

holds for some k > 2. As a consequence, we haveZ
Rnf0g

je� � 1 � �j	.d�/ <1 (3.3)

and Z
j�j>1
j�j	.d�/ <1: (3.4)

We can writeZ
j�j<1

� QN.dv; d�/C
Z
j�j>1

�N.dv; d�/

D

Z
j�j<1

� QN.dv; d�/C
Z
j�j>1

� QN.dv; d�/C
Z
j�j>1

�	.d�/:

www.risk.net/journal Journal of Energy Markets



8 F. E. Benth et al

Hence,

dY.v/ D Q� dv C �Y dBY .v/C
Z

Rnf0g

� QN.dv; d�/;

where

Q� WD � C

Z
j�j>1

�	.d�/:

By the Ito formula for semimartingales, we obtain the dynamics for X.v/:

dX.v/ D aXX.v/ dv C �YX.v/ dBY .v/C
Z

Rnf0g

X.v�/.e� � 1/ QN.dv; d�/;

where

aX WD Q� C
1
2
�2Y C

Z
Rnf0g

.e� � 1 � �/	.d�/: (3.5)

Lemma 3.1 Let Y.1/ have Lévy triplet .�; �2Y ; 	.d�// and characteristic function

.u/. Suppose that (3.3) holds. Then,

aX D ln 
.�i/;

where i is the imaginary unit.

Proof We have that

aX WD � C

Z
j�j>1

�	.d�/C
Z

Rnf0g

.e� � 1 � �/	.d�/C 1
2
�2Y :

By the Lévy–Khintchine formula for the logarithm of the characteristic function, we
have

ln 
.u/ D i�u � 1
2
�2Y u

2 C

Z
Rnf0g

.eiu� � 1 � iu�1.j�j < 1//	.d�/

D i�u � 1
2
�2Y u

2 C

Z
Rnf0g

.eiu� � 1 � iu�1.j�j < 1/

C iu�1.j�j > 1/ � iu�1.j�j > 1//	.d�/

D i Q�u � 1
2
�2Y u

2 C

Z
Rnf0g

.eiu� � 1 � iu�/	.d�/

for u 2 R. Here, we used (3.4) in the second line. By condition (3.3), u can be
extended to the complex plane. Taking u D �i yields

ln 
.�i/ D Q� C 1
2
�2Y C

Z
Rnf0g

.e� � 1 � �/	.d�/:

Hence, the result follows. �
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3.2 The valuation model

We will now solve the control problem defined in (2.1). First, we define the space
M.t; T; BY ; Bu/ as all F.t; x; %; z/ 2 C 1;2;2;1 such that, for any admissible control
A 2 A.t/, the processes

� 7!

Z �

t

e�rsFx.s; X.s/; R.s/; Z.s//�1X.s/ dBY .s/;

� 7!

Z �

t

e�rsF%.s; X.s/; R.s/; Z.s//�2R.s/ dBu.s/

are martingales, for t 6 � 6 T . The HJB equation is now derived via Bellman’s
principle of optimality.

Proposition 3.2 Suppose that V.t; x; %; z/ 2 M.t; T; BY ; Bu/, and that the
process

� 7!

Z �

t

Z
Rnf0g

e�rsŒV .s; X.s/e� ; R.s/; Z.s// � V.s;X.s/; R.s/; Z.s//� QN.ds; d�/

is a martingale. Then, for all t 2 Œ0; T �, the corresponding HJB equation associated
with the value function V is

max.Vt CLV � rV;�Vz C x/ D 0; (3.6)

where the operator L, acting on functions F � F.t; x; %; z/ 2 C 1;2;2;1, is defined
as

LF WD aXxFx C aR.%/%F% C c%Fz C
1
2
�2Y x

2Fxx C
1
2
�2u%

2F%% C ��Y �ux%Fx%

C

Z
Rnf0g

ŒF .t; xe� ; %; z/ � F.t; x; %; z/ � x.e� � 1/Fx.t; x; %; z/�	.d�/;

(3.7)

with aR.%/ given by (2.4), and aX by (3.5).

Proof See Section 5. �

To proceed, the following lemma will be useful for further calculations.

Lemma 3.3 Let 
.u/ be the characteristic function of Y.1/, defined in (3.1), and
suppose the condition of Lemma 3.1 holds. Then, for all s 2 Œt; T �, the following
expected equalities hold.
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(i) We have

EŒX.s/R.s/ j X.t/ D .x; %; z/�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//

C
�2u
4˛
.1 � e�2˛.s�t//.2 � �2/C

�u�Y

˛
.1 � e�˛.s�t//C aX .s � t /

�
:

(3.8)

(ii) We have

EŒX.T / j X.t/ D .x; %; z/� D x expŒaX .T � t /�: (3.9)

(iii) We have

EŒX.T /R.s/ j X.t/ D .x; %; z/�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//

C
�2u
4˛
.1 � e�2˛.s�t//.2 � �2u/C

�u�Y

˛
.1 � e�˛.s�t//C aX .T � t /

�
:

(3.10)

Proof See Section 5. �

Define

h � h.t; %; s/ WD
1

x
EŒX.s/R.s/ j X.t/ D .x; %; z/�;

Qh � Qh.t; %; s/ WD
1

x
EŒX.T /R.s/ j X.t/ D .x; %; z/�;

and

H � H.t; %; T / WD

Z T

t

e�r.s�t/h.t; %; s/ ds; (3.11)

QH � QH.t; %; T / WD

Z T

t

e�r.s�t/ Qh.t; %; s/ ds: (3.12)

Consider the admissible control QA1, defined by� QA1.t/ D z and d QA1.s/ D cR.s/ ds
for s > t . Define

˚.t; x; %; z/ WD J.t; x; %; z W QA1/

D E

� Z T

t

e�r.s�t/X.s/ d QA1.s/

ˇ̌ˇ̌ X.t�/ D .x; %; z/
�
: (3.13)

Journal of Energy Markets www.risk.net/journal



Optimal management of green certificates in the Swedish–Norwegian market 11

Then,

˚.t; x; %; z/ D E

�
xz C

Z T

t

e�r.s�t/X.s/cR.s/ ds

ˇ̌
ˇ̌ X.t/ D .x; %; z/

�

D xz C c

Z T

t

e�r.s�t/EŒX.s/R.s/ j X.t/ D .x; %; z/� ds

D xz C cxH.t; %; T /:

Proposition 3.4 If

aX 6 r; (3.14)

then ˚.t; x; %; z/ defined in (3.13) solves the HJB equation (3.6). Furthermore,
˚.t; x; %; z/ is dominated by the value function, ie,

˚.t; x; %; z/ 6 V.t; x; %; z/;

and ˚.T; x; %; z/ D V.T; x; %; z/ D xz.

Proof From the relation

˚.t; x; %; z/ D xz C cxH.t; %; T /;

it is clear that ˚.T; x; %; z/ D xz. Also, we see that x � ˚z D 0. It remains to show
that ˚t CL˚ � r˚ 6 0. Using the definition of H.t; %; T / in (3.11), we calculate

˚t CL˚ � r˚

D cx

Z T

t

e�r.s�t/.rhC ht / ds � cx%C aXx

�
z C c

Z T

t

e�r.s�t/h ds

�

C cxaR.%/%

Z T

t

e�r.s�t/h% ds C cx�Y �u�%
Z T

t

e�r.s�t/h% ds

C cx%C 1
2
cx�2u%

2

Z T

t

e�r.s�t/h%% ds � r

�
xz C cx

Z T

t

e�r.s�t/h ds

�

C

Z
Rnf0g

Œxe�z C cxe�H.t; %; T / � .xz C cxH.t; %; T //

� x.e� � 1/.z C cH.t; %; T //�	.d�/

D .aX � r/xz

C cx

Z T

t

e�r.s�t/Œht C aXhC aR.%/%h% C ��Y �u%h% C 1
2
�2u%

2h%%� ds:

www.risk.net/journal Journal of Energy Markets
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Inserting the derivatives of h, given in Section 5, yields

˚t CL˚ � r˚

D .aX � r/xz

C cx

Z T

t

e�r.s�t/hŒM.s; t/C aX C e�˛.s�t/.aR.%/C ��Y �u � 1
2
�2u/

C 1
2
�2ue�2˛.s�t/� ds:

The first term is clearly nonpositive due to (3.14), since xz > 0. For the integrand,
from the expressions for aR.%/ D ��˛ ln.%/C 1

2
�2u andM.s; t/ in (5.9), we obtain

M.s; t/C aX C e�˛.s�t/.aR.%/C ��Y �u � 1
2
�2u/C

1
2
�2ue�2˛.s�t/

D e�˛.s�t/Œ˛ ln.%/ � � � �u�Y �C 1
2
�2u.�

2 � 2/e�2˛.s�t/ � 1
2
�2Y � ln 
.�i/

C aX C e�˛.s�t/.� � ˛ ln.%/C 1
2
�2u C ��Y �u �

1
2
�2u/C

1
2
�2ue�2˛.s�t/

D e�˛.s�t/Œ�u�Y .� � 1/C 1
2
�2u.�

2 � 2/e�˛.s�t/�C aX � aX

6 0:

The inequality follows since �u�Y .� � 1/ C 1
2
�2u.�

2 � 2/e�˛.s�t/ 6 0. Hence,
˚tCL˚�r˚ 6 0 since cx > 0. The domination follows since QA1 is admissible. �

If aX > r , the control QA1 would violate the HJB equation. Consider instead the
admissible control QA2 defined as QA2.s/ D 0 for s 2 Œt; T / and

� QA2.T / D Z.T�/ D z C

Z T

t

cR.s/ ds:

Set
˚.t; x; %; z/ D J.t; x; %; z W QA2/: (3.15)

Then,

˚.t; x; %; z/ D EŒe�r.T�t/X.T /� QA.T / j X.t�/ D .x; %; z/�

D e�r.T�t/E

�
X.T /

�
z C

Z T

t

cR.s/ ds

� ˇ̌̌
ˇ X.t/ D .x; %; z/

�

D e�r.T�t/zEŒX.T / j X.t/ D .x; %; z/�

C e�r.T�t/c
Z T

t

EŒX.T /R.s/ j X.t/ D .x; %; z/� ds:

Thus, by Lemma 3.3(ii) and (3.12), we obtain

˚.t; x; %; z/ D xze.aX�r/.T�t/ C cx QH.t; %; T /: (3.16)
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Proposition 3.5 If

r 6 aX ; (3.17)

then ˚.t; x; %; z/ defined in (3.15) solves the HJB equation (3.6). Furthermore,
˚.t; x; %; z/ is dominated by the value function, ie,

˚.t; x; %; z/ 6 V.t; x; %; z/;

and ˚.T; x; %; z/ D V.T; x; %; z/ D xz.

Proof By (3.16), it is clear that the terminal condition holds. Turning to the HJB
equation, we have

x � ˚z D x.1 � e.aX�r/.T�t// 6 0 (3.18)

by condition (3.17). Similarly to the proof of Proposition 3.4, we get

˚t CL˚ � r˚

D Œe.aX�r/.T�t/.r � aX /�xz

C cx

Z T

t

e�r.T�t/Œ Qht C aX QhC aR.%/% Qh% C ��Y �u% Qh% C 1
2
�2u%

2 Qh%%� ds:

The first term is nonpositive by (3.17). The second is also nonpositive by similar
calculations to those in the proof of Proposition 3.4. The derivatives of ˚ and Qh can
be found in Section 5. The domination follows, since QA2 is an admissible control. �

Theorem 3.6 Suppose that˚.t; x; %; z/ 2M.t; T; BY ; Bu/, and that the process

� 7!

Z �

t

Z
Rnf0g

e�rsŒ˚.s; X.s/e� ; R.s/; Z.s// � ˚.s;X.s/; R.s/; Z.s//� QN.ds; d�/

(3.19)
is a martingale. If˚ solves the HJB equation (3.6), with˚.T;X.T /;R.T /;Z.T // D
V.T;X.T /;R.T /;Z.T //, then˚ > V for all .t; x; %; z/ 2 Œ0; T ��RC�RC�Œ0;M �.

Proof For t 6 � 6 T , by Ito’s formula we obtain
Z �

t

d.e�rs˚.s;X.s/; R.s/; Z.s///

D

Z �

t

e�rs˚t .s; X.s/; R.s/; Z.s// � re�rs˚t .s; X.s/; R.s/; Z.s// ds

C

Z �

t

e�rs˚x.s; X.s/; R.s/; Z.s//aXX.s/ ds

C

Z �

t

e�rs˚%.s; X.s/; R.s/; Z.s//aR.R.s//R.s/ ds

www.risk.net/journal Journal of Energy Markets
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C

Z �

t

e�rs˚z.s; X.s/; R.s/; Z.s//cR.s/ ds

C

Z �

t

e�rs˚x.s; X.s/; R.s/; Z.s//�YX.s/ dBY .s/

C

Z �

t

e�rs˚%.s; X.s/; R.s/; Z.s//�uR.s/ dBu.s/

�

Z �

t

e�rs˚z.s; X.s/; R.s/; Z.s// dA.s/

C

Z �

t

e�rs˚xx.s; X.s/; R.s/; Z.s//12�
2
YX

2.s/ ds

C

Z �

t

e�rs˚%%.s; X.s/; R.s/; Z.s//12�
2
uR

2.s/ ds

C

Z �

t

e�rs˚x%.s; X.s/; R.s/; Z.s//�Y �u�X.s/R.s/ ds

C

Z �

t

Z
Rnf0g

e�rsŒ˚.s; X.s�/e� ; R.s�/; Z.s�//

� ˚.s;X.s�/; R.s�/; Z.s�//� QN.ds; d�/

C

Z �

t

Z
Rnf0g

e�rsŒ˚.s; X.s/CX.s�/.e� � 1/; R.s/; Z.s//

� ˚.s;X.s/; R.s/; Z.s// �X.s/.e� � 1/�	.d�/ ds:

Taking the expectation and using the conditions in the theorem yields

˚.t; x; %; z/ � e�r.��t/EŒ˚.�;X.�/; R.�/;Z.�// j X.t/ D .x; %; z/�

D E

� Z �

t

e�r.s�t/˚z.s; X.s/; R.s/; Z.s// dA.s/

C

Z �

t

e�r.s�t/Œ�.˚t CL˚ � r˚/

� .s; X.s/; R.s/; Z.s//� ds

ˇ̌ˇ̌ X.t/ D .x; %; z/
�
:

Take � D T . Then,

˚.t; x; %; z/ D E

� Z T

t

e�r.s�t/˚z.s; X.s/; R.s/; Z.s// dA.s/

C

Z T

t

e�r.s�t/Œ�.˚t CL˚ � r˚/.s; X.s/; R.s/; Z.s//� ds

C e�r.T�t/˚.T;X.T /;R.T /;Z.T //

ˇ̌ˇ̌ X.t/ D .x; %; z/
�
:
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Since ˚ satisfies the HJB equation, at time s we have

˚z.s; X.s/; R.s/; Z.s// > X.s/; �.˚t CL˚ � r˚/.s; X.s/; R.s/; Z.s// > 0;

and by assumption we have

˚.T;X.T /;R.T /;Z.T // D V.T;X.T /;R.T /;Z.T // > 0:

It follows that

˚.t; x; %; z/ > E

� Z T

t

e�r.s�t/X.s/ dA.s/

ˇ̌
ˇ̌ X.t/ D .x; %; z/

�
:

Since this inequality holds for any admissible control, it also holds for the supremum
over all such controls. Hence,

˚.t; x; %; z/ > V.t; x; %; z/:

�

Lemma 3.7 For the functions ˚.t; x; %; z/ defined in (3.13) and (3.15), condition
(3.19) holds and ˚.t; x; %; z/ 2M.t; T; BY ; Bu/.

Proof See Section 5. �

From the Verification Theorem (Theorem 3.6), we conclude the following.

Theorem 3.8 For aX < r ,

V.t; x; %; z/ D xz C cxH.t; %; T /; (3.20)

and the optimal control is QA1.
For r 6 aX ,

V.t; x; %; z/ D xze.aX�r/.T�t/ C cx QH.t; %; T /; (3.21)

and the optimal control is QA2.

Proof Since QA1 and QA2 are admissible, the conclusion follows directly from
Propositions 3.4 and 3.5 together with Lemma 3.7 and Theorem 3.6. �

The optimal value of the income from selling certificates is thus given by Theo-
rem 3.8, and as a by-product we get the optimal strategy. Theorem 3.8 also provides
us with conditions on which strategy to use, depending on the sign of aX � r , ie, QA1
or QA2. Hence, in practice we only need to determine the sign of aX � r . Then, by
Theorem 3.8, a solution for the optimal value is given by (3.20) or (3.21). Apart from
an integration in definitions of H and QH , we have a closed-form solution.
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FIGURE 1 Time series for traded TGC spot price data X .
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Data collected from February 17, 2009 to November 1, 2016.

Furthermore, note the interpretation of the optimal strategies QA1 and QA2: if the
expected rate of return is less than the discount rate r , the TGC holder should sell all
certificates they hold at time t and continue selling at the same rate as certificates are
obtained from the production of renewable energy. On the other hand, if the expected
rate of return is greater than r , the TGC holder should wait, and then sell all certificates
at maturity.

In the next section, we will conduct a case study where we explicitly calculate the
optimal value. First, just to illustrate the simplicity of what control to choose, consider
the following simple example.

Example 3.9 Let the logarithmic price follow a Brownian diffusion process:

dY.t/ D � dt C �Y dBY .t/:

This results in a price X having geometric Brownian motion dynamics

dX.v/ D aXX.v/ dv C �YX.v/ dBY .v/;

where aX D �C 1
2
�2Y . Consider a time series of certificate spot prices collected from

ICAP.1 In Figure 1, we show the time series of traded prices from February 17, 2009
to November 1, 2016. All together, there are 401 prices denoted in SEK/MWh. The
certificates are not traded every day, and in the time span considered here we have
trades on average about every fourth day when the exchange is open, or five trades

1 The data is provided by Montel.

Journal of Energy Markets www.risk.net/journal
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FIGURE 2 Empirical density of the ICAP log returns (solid line) with the MLE fitted normal
(dotted) and NIG (dashed line) distributions.
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TABLE 1 MLE estimated NIG parameters.

Parameter MLE

ǪNIG 22.87
Ǒ
NIG �5.18
O�NIG 0.00065
OıNIG 0.0047

per month. There is a general downward trend in the prices, where the annual value
of the drift aX is estimated to be �8:5% and the sign of aX � r is therefore naturally
negative. Then, the optimal strategy is found to be QA1 by Theorem 3.8.

4 A CASE STUDY

In this section, we perform a case study that illustrates our theoretical analysis of the
optimal management of certificates using actual prices and production data. We base
our investigations on the ICAP price data introduced above, and on realized wind
power production from Denmark. The latter is chosen in order to obtain reasonable
estimates on the model for the production rate, as we do not have available production
data from specific wind power plants in Norway or Sweden.

Let us first have a closer look at the TGC prices. In the example at the end of
the previous section, we discussed a geometric Brownian motion model. However,
in Figure 2 we show the empirical density of the log returns together with the fitted
normal distribution on a logarithmic frequency scale. As is evident, the tails are not

www.risk.net/journal Journal of Energy Markets
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FIGURE 3 Time series for the daily wind production in DK1.
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Data is provided by Montel, collected from the Nord Pool database.

explained well at all, but, using the more flexible NIG distribution (see, for example,
Barndorff-Nielsen (1998) for the NIG distribution applied in finance), we obtain a
much better fit.

The NIG distribution is a four-parameter family of distributions, with parameters
denoted ˛NIG, ˇNIG, ıNIG and �NIG. The location of the distribution is expressed by
�NIG, and the scale by ıNIG. The skewness parameter is ˇNIG, and the tail heaviness is
modeled via ˛NIG. We refer the reader to Barndorff-Nielsen (1998) for more details
on the NIG distribution.

Using maximum likelihood estimation (MLE),2 we obtain the parameters for the
NIG distribution fitted to the log returns of the ICAP price data as reported in Table 1.
We note that these are rescaled for a NIG distribution on a daily time scale, which
means that we divide the estimates for �NIG and ıNIG by four. Recall that we have
a trade roughly every fourth day, and we have thus supposed a sampling interval of
four days for simplicity.

In Figure 2, we see the excellent fit of the NIG distribution to the ICAP log return
data.

To conduct a case study on the production rateR.t/, we consider a data set of actual
wind production in Denmark (the area DK1). We have available daily wind power
production figures (in megawatt hours) from January 1, 2015 to November 16, 2016.
The time series of the 685 production data points is plotted in Figure 3.

2 We applied the built-in function “nigFit” in the R library “fBasics” for the MLE with the moment
estimated parameters as initial values.
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FIGURE 4 Empirical density for the residuals of the daily wind production in DK1 with the
fitted normal distribution (dashed line) on a logarithmic frequency scale.
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We recall from (2.3) that ln.R.t// D U.t/, whereU is an OU process. On a discrete
time scale, an OU process is an AR(1) time series, and by simple linear regression
we estimate the speed of mean reversion to be Ǫ D 0:51, the mean level O� D 10:3

and the standard deviation O�u D 0:71.
In Figure 4, we show the fitted normal distribution to the residuals of the regression

analysis together with the empirical density on a logarithmic frequency scale. The
normal model is far from perfect, but it still captures the distribution of the wind
variation in both tails and the center reasonably well. In this analysis, we have ignored
any potential seasonal effects in the production data.

With both the production and the TGC price data models at hand, we can analyze
the optimal management of green certificates. The characteristic function of the NIG
distribution is (see, for example, Schoutens 2003)


.u/ D exp
�

iu�NIG � ıNIG

�q
˛2NIG � .ˇNIG C iu/2 �

q
˛2NIG � ˇ

2
NIG

��
:

Thus, we let Y in (3.1) have the Lévy triplet .�; 0; 	.d�//, where

� D
2ıNIG˛NIG

�

Z 1

0

sinh.ˇNIGx/K1.˛NIGx/ dx C �NIG

and

	.d�/ D
ıNIG˛NIG

�

exp.ˇNIG�/K1.˛NIGj�j/

j�j
d�;

and the modified Bessel function of the third kind Kv.z/, with index v, is given by

Kv.z/ D
1

2

Z 1
0

uv�1 exp.�1
2
z.uC u�1// du; z > 0:
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Since the NIG distribution has finite moments, the condition in Lemma 3.1 holds and
we obtain

aX D ln 
.�i/ D �NIG � ıNIG

�q
˛2NIG � .ˇNIG C 1/2 �

q
˛2NIG � ˇ

2
NIG

�
: (4.1)

The NIG parameters in Table 1 provide us with the estimate OaX D �0:000343 and
therefore aX � r < 0 for any nonnegative interest rates. Note that (3.2) holds for any
k < 16:6 since

k C ǑNIG �
1
2
ǪNIG D k � 16:6;

which is less than zero as long as k < 16:6. Hence, by Theorem 3.8, the optimal
strategy is to use the control QA1, and the optimal value is given by

V.t; x; %; z/ D xz C cxH.t; %; T /:

From the definition ofH in (3.11) and Lemma 3.3(i), after a change of variables, we
obtain

V.t; x; %; z/ D xz C cx

Z T�t

0

e�ruh.u; %/ du;

with (slightly abusing the notation)

h.u; %/ D exp

�
ln.%/e�˛u C

�

˛
.1 � e�˛u/C

�2u
2˛
.1 � e�2˛u/C aXu

�
:

Note that, when u becomes large,

h.u; %/ � exp

�
aXuC

2�C �2u
2˛

�
;

which in our empirical example will tend to zero with an exponential rate aX < 0.
Therefore, the integral Z T�t

0

exp.�ru/h.u; %/ du

will tend to a constant when T � t is large. The current state, %, of the wind production
will, in the long term, have no effect on the current value V . This is of course not
unreasonable, taking into account that our production rate is modeled as a stationary
process. In fact, the half-life of the production rate is approximately 1.3 days, so it
will quickly reach a stationary level.

In Figure 5, we plot the integral term
R T�t
0

exp.�ru/h.u; %/ du as a function of
T � t using the estimated parameters as input. This essentially describes the time
value of the value function V . We set ln.%/ D �=˛, which is the stationary mean of
U.t/, while the annual discount rate is r D 7%. After a ten-year horizon, we see that
the integral has still not reached its asymptote.
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FIGURE 5 The integral
R T�t

0 exp.�ru/h.u; %/ du as a function of T � t .
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FIGURE 6 The integral
R T�t

0 exp.�ru/h.u; %/ du as a function of T � t small.
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In Figure 6, we zoom in on the integral value for T � t small, ie, in the range
0–10 days. This will be in the closing days of the market.

The dotted lines illustrate the value if ln.%/ is 50% below (dotted line below the
complete) or 50% above (dotted line above the complete) the stationary mean. There
are significant effects on the time value for small T � t . Note also that the integral is
close to linear in T � t , while in Figure 5 it is concave overall.

For a particular producer of renewable power qualifying for TGCs, data for the pro-
duction from the power plant should of course be used in order to model the production
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rate. In our case study, we have used wind power from Denmark only as a proxy. The
OU model can admittedly be improved. As mentioned earlier, higher-order autore-
gressive models (or CARMA models in continuous time) could be suitable, as wind,
for example, is typically well explained by such models (see, for example, Benth and
Saltyte Benth 2013). Lévy processes may also be called for when modeling residu-
als, as we may also observe leptokurtic behavior in such data. The main drawback
with higher-order autoregressive models in our context is the optimization problem,
which in a Markovian context will depend on unobserved states of the autoregressive
model. This is the reason for choosing a simpler dynamics for the production rate in
this paper. The TGC price dynamics seems very well suited for the purpose. However,
we may also improve our analysis by performing an estimation that takes into account
varying time steps between observations.

5 PROOFS AND INTERMEDIATE RESULTS

In this section, we have collected proofs of most of the results in the paper, along with
necessary intermediate results.

5.1 Proof of Proposition 3.2

The value function is defined in (2.1) as

V.t; x; %; z/ WD sup
A2A.t/

E

� Z T

t

e�r.s�t/X.s/ dA.s/

ˇ̌
ˇ̌ X.t/ D .x; %; z/

�
:

By Bellman’s principle of optimality, we have, for t 6 � 6 T ,

0 D sup
A2A.t/

E

� Z �

t

e�rsX.s/ dA.s/C e�r�V.�;X.�/; R.�/;Z.�//

� e�rtV.t; x; %; z/

ˇ̌
ˇ̌ X.t/ D .x; %; z/

�
: (5.1)

By Ito’s formula, we obtain
Z �

t

d.e�rsV.s;X.s/; R.s/; Z.s///

D

Z �

t

e�rsVt .s; X.s/; R.s/; Z.s// � re�rsV.s;X.s/; R.s/; Z.s// ds

C

Z �

t

e�rsVx.s; X.s/; R.s/; Z.s//aXX.s/ ds

C

Z �

t

e�rsV%.s; X.s/; R.s/; Z.s//aR.R.s//R.s/ ds
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C

Z �

t

e�rsVz.s; X.s/; R.s/; Z.s//cR.s/ ds

C

Z �

t

e�rsVx.s; X.s/; R.s/; Z.s//�YX.s/ dBY .s/

C

Z �

t

e�rsV%.s; X.s/; R.s/; Z.s//�uR.s/ dBu.s/

�

Z �

t

e�rsVz.s; X.s/; R.s/; Z.s// dA.s/

C

Z �

t

e�rsVxx.s; X.s/; R.s/; Z.s//12�
2
YX

2.s/ ds

C

Z �

t

e�rsV%%.s; X.s/; R.s/; Z.s//12�
2
uR

2.s/ ds

C

Z �

t

e�rsVx%.s; X.s/; R.s/; Z.s//�Y �u�X.s/R.s/ ds

C

Z �

t

e�rsŒV .s; X.s�/e� ; R.s�/; Z.s�//

� V.s;X.s�/; R.s�/; Z.s�//� QN.ds; d�/

C

Z �

t

e�rsŒV .s; X.s/CX.s�/.e� � 1/; R.s/; Z.s//

� V.s;X.s/; R.s/; Z.s// �X.s/.e� � 1/�	.d�/ ds:

By the conditions in the proposition, we get, using Bellman’s principle,

sup
A2A.t/

E

� Z �

t

e�rs.X.s/ � Vz/ dA.s/

C

Z �

t

e�rsŒVt CLV � rV � ds

ˇ̌
ˇ̌ X.t/ D .x; %; z/

�
D 0; (5.2)

where the operator L is given in (3.7). Clearly, (5.2) is satisfied by the HJB equation:

max.Vt CLV � rV;�Vz C x/ D 0:

5.2 Proof of Lemma 3.3

We have that
X.s/R.s/ D xeY.s/eU.s/:

Note that we can write the dynamics of Y as

dY.v/ D dY0.v/C �Y dBY .v/;
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where

dY0.v/ WD � dv C
Z
j�j<1

� QN.dv; d�/C
Z
j�j>1

�N.dv; d�/;

using the representation

Y.s/ D Y0.s/C �Y

Z s

t

dBY .v/:

Here,Y0 has the characteristic triplet .�; 0; 	.d�//. Furthermore, due to the correlation
between BY and Bu, we have

Bu.s/ D �BY .s/C
p
1 � �2W.s/; (5.3)

where W.s/ is another Brownian motion, independent of BY .s/. It follows that

EŒX.s/R.s/ j X.t/ D .x; %; z/�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//

�

� E

�
exp

�Z s

t

�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

� ˇ̌ˇ̌ X.t/ D .x; %; z/
�

� EŒexp.Y0.s// j X.t/ D .x; %; z/�: (5.4)

For the first expectation, we have, by using (5.3),

Z s

t

�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

D

Z s

t

.�ue�˛.s�v/�C �Y / dBY .v/C
Z s

t

�ue�˛.s�v/
p
1 � �2 dW.v/: (5.5)

Both integrals in (5.5) have zero expectation, and

Var

�Z s

t

.�ue�˛.s�v/�C �Y

�
dBY .v//

D

Z s

t

.�ue�˛.s�v/�C �Y /
2 dv

D
�2u
2˛
.1 � e�2˛.s�t//C

2�u�Y

˛
.1 � e�˛.s�t//C �2Y .s � t / (5.6)

and

Var

�Z s

t

�ue�˛.s�v/
p
1 � �2 dW.v/

�
D

Z s

t

�2ue�2˛.s�v/.1 � �2/ dv

D
�2u.1 � �

2/

2˛
.1 � e�2˛.s�t//; (5.7)
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where we have used the Ito isometry. Consequently, (5.5) is normally distributed,
with mean zero and variance being the sum of (5.6) and (5.7). It follows that

E

�
exp

�
�Y

Z s

t

dBY .v/C
Z s

t

�ue�˛.s�v/ dBu.v/

� ˇ̌ˇ̌ X.t/ D .x; %; z/
�

D exp

�
�2u
4˛
.1 � e�2˛.s�t//.2 � �2/C

�u�Y

˛
.1 � e�˛.s�t//C 1

2
�2Y .s � t /

�
:

We now turn to the second expectation in (5.4). By the Lévy–Kinchtine formula,
we obtain

EŒeiuY0.s/ j X.t/ D .x; %; z/� D 

.s�t/
Y0

.u/;

where 
Y0 is the characteristic function for Y0.1/. From the assumption on 
, which
is inherited by 
Y0 , it follows that, with u D �i,

EŒeY0.s/ j X.t/ D .x; %; z/� D 
.s�t/Y0
.�i/:

Hence,

EŒX.s/R.s/ j X.t/ D .x; %; z/�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//C

�2u
4˛
.1 � e�2˛.s�t//.2 � �2/

C
�u�Y

˛
.1 � e�˛.s�t//C 1

2
�2Y .s � t /C .ln 
Y0.�i//.s � t /

�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//C

�2u
4˛
.1 � e�2˛.s�t//.2 � �2/

C
�u�Y

˛
.1 � e�˛.s�t//C .ln 
.�i//.s � t /

�
:

By Lemma 3.1, claim (i) follows. For (ii), we obtain

EŒX.T / j X.t/.x; %; z/�

D xEŒe.Y0.T // j X.t/ D .x; %; z/�E

�
exp

�Z T

t

�Y dBY .v/

� ˇ̌ˇ̌ X.t/ D .x; %; z/
�

D x
.T�t/.�i/ exp.1
2
�2Y .T � t //

D x exp.ln 
Y0.�i/C 1
2
�2Y /.T � t /

D x exp.ln 
.�i//.T � t /

D x exp.aX .T � t //:
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For (iii), we have

EŒX.T /R.s/ j X.t/ D .x; %; z/�

D x exp.ln.%/e�˛.s�t/ C
�

˛
.1 � e�˛.s�t///

� E

�
exp

�Z T

t

�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

� ˇ̌ˇ̌ X.t/ D .x; %; z/
�

� EŒexp.Y0.T // j X.t/ D .x; %; z/�:

Similarly to (5.5), we getZ T

t

�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

D

Z T

s

�Y dBY .v/C
Z s

t

�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

D

Z T

s

�Y dBY .v/C
Z s

t

.�ue�˛.s�v/�C �Y / dBY .v/

C

Z s

t

�ue�˛.s�v/
p
1 � �2 dW.v/:

The first integral has expectation zero and variance �2Y .T � s/. Thus,

E

�
exp

�Z T

t

�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

� ˇ̌ˇ̌ X.t/ D .x; %; z/
�

D exp

�
�2u
4˛
.1 � e�2˛.s�t//.2 � �2u/C

�u�Y

˛
.1 � e�˛.s�t//C 1

2
�2Y .T � t /

�
;

as in the proof of (i). Hence,

EŒX.T /R.s/ j X.t/ D .x; %; z/�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//

C
�2u
4˛
.1 � e�2˛.s�t//.2 � �2u/

C
�u�Y

˛
.1 � e�˛.s�t//C 1

2
�2Y .T � t / ln 
.�i/.T � t /

�

D x exp

�
ln.%/e�˛.s�t/ C

�

˛
.1 � e�˛.s�t//

C
�2u
4˛
.1 � e�2˛.s�t//.2 � �2u/

C
�u�Y

˛
.1 � e�˛.s�t//C ln 
.�i/.T � t /

�
:

The result follows.
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5.3 Calculation of the derivatives of � in terms of h with the
control QA1

Define

h WD h.t; %; s/ WD
1

x
EŒX.s/R.s/ j X.t/ D .x; %; z/�;

H.t; %; T / WD

Z T

t

e�r.s�t/h.t; %; s/ ds:

For the control QA1, we have

˚.t; x; %; z/ D xz C cxH.t; %; T /: (5.8)

By elementary differentiation, we get

˚x D z C c

Z T

t

e�r.s�t/h ds;

˚xx D 0;

˚% D cxH% D cx

Z T

t

e�r.s�t/h% ds;

˚x% D cH% D c

Z T

t

e�r.s�t/h% ds;

˚%% D cxH%% D cx

Z T

t

e�r.s�t/h%% ds;

˚t D cxHt D cx

Z T

t

e�r.s�t/.ht C rh/ ds � cxh.t; %; t/;

˚z D x:

The partial derivatives of h.t; %; s/ are given by

h% D
1

%
he�˛.s�t/;

h%% D
1

%2
h.e�2˛.s�t/ � e�˛.s�t//;

ht DM.s; t/h;

where

M.s; t/ D e�˛.s�t/Œ˛ ln.%/ � � � �u�Y �C 1
2
�2u.�

2 � 2/e�2˛.s�t/ � aX : (5.9)
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5.4 Calculation of the derivatives of � and Qh with the control QA2

Define

Qh WD Qh.t; %; s/ WD
1

x
EŒX.T /R.s/ j X.t/ D .x; %; z/�;

QH.t; %; T / WD

Z T

t

e�r.s�t/ Qh.t; %; s/ ds:

For the control QA2, we have

˚.t; x; %; z/ D xze.aX�r/.T�t/ C cx QH.t; %; T /: (5.10)

By elementary differentiation, we get

˚x D ze.aX�r/.T�t/ C c
Z T

t

e�r.T�t/ Qh ds;

˚xx D 0;

˚% D cx QH% D cx

Z T

t

e�r.T�t/ Qh% ds;

˚x% D c QH% D c

Z T

t

e�r.T�t/ Qh% ds;

˚%% D cx QH%% D cx

Z T

t

e�r.s�t/ Qh%% ds;

˚t D xze.aX�r/.T�t/.r � aX /C cx QHt

D xze.aX�r/.T�t/.r � aX /

C cx

Z T

t

e�r.T�t/. Qht C r Qh/ ds � cx%e.aX�r/.T�t/;

˚z D xe.aX�r/.T�t/:

The partial derivatives of Qh.t; %; s/ are given by

Qh% D
1

%
Qhe�˛.s�t/;

Qh%% D
1

%2
Qh.e�2˛.s�t/ � e�˛.s�t//;

Qht DM.s; t/ Qh;

where

M.s; t/ D e�˛.s�t/Œ˛ ln.%/ � � � �u�Y �C 1
2
�2u.�

2 � 2/e�2˛.s�t/ � aX :
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5.5 Proof of Lemma 3.7

We start with a result stated in, for example, Cont and Tankov (2004). Let  ni for
i D 1; 2 be any simple predictable function. Then, the process

� 7!

Z �

t

Z
Rnf0g

 ni .s; �/ d QN.ds; d�/ (5.11)

is a square integrable martingale that verifies the isometry formula.
Define

˚1.s; X.s/; R.s/; Z.s// WD X.s/Z.s/C cX.s/H.s;R.s/; T / (5.12)

and

˚2.s; X.s/; R.s/; Z.s// WD X.s/Z.s/e
.a
.2/
X
�r/.T�s/ C cX.s/ QH.s;R.s/; T /;

(5.13)

where a.i/X is associated with ˚i . Define

 i .s; �/ WD e�rsŒ˚i .s; X.s/e
� ; R.s/; Z.s// � ˚i .s; X.s/; R.s/; Z.s//�

D e�rs.e� � 1/˚i .s; X.s/; R.s/; Z.s//:

If

E

� Z �

t

Z
Rnf0g

j i .s; �/j
2	.d�/ ds

ˇ̌
ˇ̌ X.t/ D .x; %; z/

�
<1 (5.14)

holds for i D 1; 2, then there exists a sequence . ni / of simple predictable functions
such that (5.11) converges, in L2.P/, to a process

� 7!

Z �

t

Z
Rnf0g

 i .s; �/ d QN.ds; d�/: (5.15)

The limiting process (5.15) is also a square integrable martingale that verifies the
isometry formula (see, for example, Cont and Tankov 2004; Ikeda and Watanabe
1981). Thus, the martingale property of (3.19) follows if (5.14) holds. By Fubini’s
Theorem, and since r > 0, we have

E

� Z �

t

Z
Rnf0g

j i .s; �/j
2	.d�/ ds

ˇ̌ˇ̌ X.t/ D .x; %; z/
�

6
Z

Rnf0g

je� � 1j	.d�/E

� Z �

t

j˚i .s; X.s/; R.s/; Z.s//j
2 ds

ˇ̌̌
ˇ X.t/ D .x; %; z/

�
:

(5.16)
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The first integral is finite by condition (3.2). For notational convenience, define

DŒ�; ˛; �u; �Y ; ��. � s/

WD
�

˛
.1 � e�˛.��s//C

�2u
4˛
.1 � e�2˛.��s//.2 � �2/C

�u�Y

˛
.1 � e�˛.��s//:

Then,

˚1.s; X.s/; R.s/; Z.s//

WD X.s/Z.s/C c

Z T

s

X.s/R.s/expŒ�˛.��s/� exp..a.1/X � r/. � s//

�DŒ�; ˛; �u; �Y ; ��. � s/ d;
(5.17)

and

˚2.s; X.s/; R.s/; Z.s//

WD exp..a.2/X � r/.T � s//

�

�
X.s/Z.s/C c

Z T

s

X.s/R.s/expŒ�˛.��s/�DŒ�; ˛; �u; �Y ; ��. � s/ d

�
:

(5.18)

Recall that, by assumption, a.1/X � r < 0 and a.2/X � r > 0. Hence,

j˚1.s; X.s/; R.s/; Z.s//j

6 X.s/Z.s/C c
Z T

s

X.s/R.s/expŒ�˛.��s/�DŒ�; ˛; �u; �Y ; ��. � s/ d

6 j˚2.s; X.s/; R.s/; Z.s//j: (5.19)

It follows from (5.16) that (5.14) holds for i D 1; 2 if

E

� Z �

t

j˚2.s; X.s/; R.s/; Z.s//j
2 ds

ˇ̌ˇ̌ X.t/ D .x; %; z/
�

(5.20)

is finite. We obtain

j˚2.s; X.s/; R.s/; Z.s//j
2

D e2.a
.2/
X
�r/.T�s/

�

�
X.s/Z.s/C c

Z T

s

X.s/R.s/expŒ�˛.��s/�DŒ�; ˛; �u; �Y ; ��. � s/ d

�2
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D e2.a
.2/
X
�r/.T�s/

�

�
X2.s/Z2.s/C 2c

Z T

s

X2.s/Z.s/R.s/expŒ�˛.��s/�

�DŒ�; ˛; �u; �Y ; ��. � s/ d

C c2
Z T

s

X.s/R.s/expŒ�˛.�1�s/�DŒ�; ˛; �u; �Y ; ��.1 � s/ d1

�

Z T

s

X.s/R.s/expŒ�˛.�2�s/�DŒ�; ˛; �u; �Y ; ��.2 � s/ d2

�

D e2.a
.2/
X
�r/.T�s/

�

�
X2.s/Z2.s/C 2c

Z T

s

X2.s/Z.s/R.s/expŒ�˛.��s/�1.R.s/ > 1/

�DŒ�; ˛; �u; �Y ; ��. � s/ d

C 2c

Z T

s

X2.s/Z.s/R.s/expŒ�˛.��s/�1.R.s/ < 1/

�DŒ�; ˛; �u; �Y ; ��. � s/ d

C c2
Z T

s

Z T

s

�
X2.s/R.s/e

�˛.�1C�2�2s/

1.R.s/ > 1/

�DŒ�; ˛; �u; �Y ; ��.1 � s/

�DŒ�; ˛; �u; �Y ; ��.2 � s/

�
d1 d2

C c2
Z T

s

Z T

s

�
X2.s/R.s/e

�˛.�1C�2�2s/

1.R.s/ < 1/

�DŒ�; ˛; �u; �Y ; ��.1 � s/

�DŒ�; ˛; �u; �Y ; ��.2 � s/

�
d1 d2

�
:

Taking conditional expectation, using Fubini’s Theorem and that e�˛.�/ 2 .0; 1/, we
obtain

EŒj˚2.s; X.s/; R.s/; Z.s//j
2 j X.t/ D .x; %; z/�

6 e2.a
.2/
X
�r/.T�s/

�

�
EŒX2.s/Z2.s/ j X.t/ D .x; %; z/�

C 2c

Z T

s

EŒX2.s/Z.s/R.s/ j X.t/ D .x; %; z/�

�DŒ�; ˛; �u; �Y ; ��. � s/ d
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C 2c

Z T

s

EŒX2.s/Z.s/ j X.t/ D .x; %; z/�

�DŒ�; ˛; �u; �Y ; ��. � s/ d

C c2
Z T

s

Z T

s

�
EŒX2.s/R.s/ j X.t/ D .x; %; z/�

�DŒ�; ˛; �u; �Y ; ��.1 � s/

�DŒ�; ˛; �u; �Y ; ��.2 � s/

�
d1 d2

C c2
Z T

s

Z T

s

�
EŒX2.s/ j X.t/ D .x; %; z/�

�DŒ�; ˛; �u; �Y ; ��.1 � s/

�DŒ�; ˛; �u; �Y ; ��.2 � s/

�
d1 d2

�
:

Note that

DŒ�; ˛; �u; �Y ; ��. � s/ 6

8̂
ˆ̂<
ˆ̂̂:

exp

�
�

˛
C
�2u
4˛
C
�u�Y

˛

�
if � > 0;

exp

�
�2u
4˛
C
�u�Y

˛

�
if � < 0:

Define

NDŒ�; ˛; �u; �Y ; �� WD max

�
exp

�
�

˛
C
�2u
4˛
C
�u�Y

˛

�
; exp

�
�2u
4˛
C
�u�Y

˛

��
:

Then,
DŒ�; ˛; �u; �Y ; ��. � s/ 6 NDŒ�; ˛; �u; �Y ; ��:

We obtain

EŒj˚2.s; X.s/; R.s/; Z.s//j
2 j X.t/ D .x; %; z/�

6 e2.a
.2/
X
�r/.T�s/

�

�
EŒX2.s/Z2.s/ j X.t/ D .x; %; z/�

C 2c.T � s/ NDŒ�; ˛; �u; �Y ; ��EŒX
2.s/Z.s/R.s/ j X.t/ D .x; %; z/�

C 2c.T � s/ NDŒ�; ˛; �u; �Y ; ��EŒX
2.s/Z.s/ j X.t/ D .x; %; z/�

C c2.T � s/2 ND2Œ�; ˛; �u; �Y ; ��EŒX
2.s/R.s/ j X.t/ D .x; %; z/�

C c2.T � s/2 ND2Œ�; ˛; �u; �Y ; ��EŒX
2.s/ j X.t/ D .x; %; z/�

�
:

(5.21)
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Recall that

Z.s/ D cP.s/ � A.s/; where P.s/ D
Z s

0

R.v/ dv:

Since A is nondecreasing and A.s/ 6 cP.s/, we have

Z.s/ 6 c
Z s

t

R.v/ dv CZ.t/;

Z2.s/ 6
�
c

Z s

t

R.v/ dv CZ.t/

�2

D
c

2

Z s

t

R.u/Z.u/ duC 2cZ.t/
Z s

t

R.v/ dv CZ2.t/:

9>>>>>>>=
>>>>>>>;

(5.22)

We now calculate the conditional expectations in (5.21). In the calculations below,
we will use

EŒ � j X.t/� D EŒ � j Ft �:

For EŒX2.s/ j X.t/ D .x; %; z/�

Similarly to the proof of Lemma 3.3(ii), we get

EŒX2.s/ j Ft � D X
2.t/EŒe2Y0.s/ j Ft �E

�
exp

�Z s

t

2�Y dBY .v/

� ˇ̌ˇ̌ Ft

�

D X2.t/ exp.ln.
.�2i//.s � t //: (5.23)

Since X.t/ D x, we have

EŒX2.s/ j X.t/ D .x; %; z/� D x2 exp.ln.
.�2i//.s � t //: (5.24)

This is clearly positive and finite for s 2 Œt; T �.

For EŒX2.s/R.s/ j X.t/ D .x; %; z/�

Similarly to the proof of Lemma 3.3(i), we obtain

EŒX2.s/R.s/ j Ft �

D EŒX2.t/e2Y.s/eU.s/ j Ft �

D X2.t/R.t/expŒ�˛.s�t/� exp

�
�

˛
.1 � e�˛.s�t//

�

� E

�
exp

�Z s

t

2�Y dBY .v/C
Z s

t

�ue�˛.s�t/ dBu.v/

� ˇ̌̌
ˇ Ft

�
EŒe2Y0.s/ j Ft �

D X2.t/R.t/expŒ�˛.s�t/�DŒ�; ˛; �u; 2�Y ; ��.s � t / expŒln.
.�2i//.s � t /�
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D X2.t/R.t/expŒ�˛.s�t/�1.R.t/ > 1/
�DŒ�; ˛; �u; 2�Y ; ��.s � t / expŒln.
.�2i//.s � t /�

CX2.t/R.t/expŒ�˛.s�t/�1.R.t/ < 1/

�DŒ�; ˛; �u; 2�Y ; ��.s � t / expŒln.
.�2i//.s � t /�

6 X2.t/.R.t/C 1/ NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�: (5.25)

Since X.t/ D x;R.t/ D %, we have

EŒX2.s/R.s/ j X.t/ D .x; %; z/�

6 x2.%C 1/ NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�: (5.26)

This is clearly positive and finite for s 2 Œt; T �.

For EŒX2.s/Z.s/ j X.t/ D .x; %; z/�

By (5.22), we obtain

EŒX2.s/Z.s/ j Ft � 6 E

�
X2.s/c

Z s

t

R.v/ dv

ˇ̌
ˇ̌ Ft

�
CZ.t/EŒX2.s/ j Ft �: (5.27)

The last term is positive and finite by (5.24). Thus, by Fubini’s Theorem and the tower
property, we obtain

EŒX2.s/Z.s/ j Ft � 6 c
Z s

t

EŒX2.s/R.v/ j Ft � dv

D c

Z s

t

EŒR.v/EŒX2.s/ j Fv� j Ft � dv

D c

Z s

t

EŒX2.v/R.v/ j Ft � exp.ln.
.�2i//.s � v// dv;

(5.28)

where we have used (5.23) with t replaced by v. By (5.25), we have

EŒX2.v/R.v/ j Ft � 6 X2.t/.R.t/C 1/ NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.v � t /�:
(5.29)

Hence,

EŒX2.s/Z.s/ j Ft �

6 c
Z s

t

X2.t/.R.t/C 1/ NDŒ�; ˛; �u; 2�Y ; �� exp.ln.
.�2i//.s � t // dv

D cX2.t/.R.t/C 1/.s � t / NDŒ�; ˛; �u; 2�Y ; �� exp.ln.
.�2i//.s � t //:
(5.30)
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Since X.t/ D x and R.t/ D %, we have

EŒX2.s/Z.s/ j X.t/ D .x; %; z/�

6 cx2.%C 1/.s � t / NDŒ�; ˛; �u; 2�Y ; �� exp.ln.
.�2i//.s � t //: (5.31)

This is clearly positive and finite for s 2 Œt; T �.

For EŒX2.s/Z.s/R.s/ j X.t/ D .x; %; z/�

By (5.22), (5.26), Fubini’s Theorem and the tower property, we have

EŒX2.s/Z.s/R.s/ j Ft �

6 E

�
X2.s/R.s/

Z s

t

R.v/ dv

ˇ̌
ˇ̌ Ft

�
CZ.t/EŒX2.s/R.s/ j Ft �

6
Z s

t

EŒR.v/EŒX2.s/R.s/ j Fv� j Ft � dv: (5.32)

As in (5.25), we have

EŒX2.s/R.s/ j Fv� D X
2.v/R.v/expŒ�˛.s�v/�

�DŒ�; ˛; �u; 2�Y ; ��.s � v/ expŒln.
.�2i//.s � v/�:

Hence,

EŒX2.s/Z.s/R.s/ j Ft �

6
Z s

t

EŒX2.v/R.v/.1Ce�˛.s�v// j Ft �

�DŒ�; ˛; �u; 2�Y ; ��.s � v/ expŒln.
.�2i//.s � v/� dv:

D

Z s

t

�
EŒX2.v/R.v/.1Ce�˛.s�v//1.R.v/ > 1/ j Ft �

�DŒ�; ˛; �u; 2�Y ; ��.s � v/ expŒln.
.�2i//.s � v/�

�
dv:

C

Z s

t

�
EŒX2.v/R.v/.1Ce�˛.s�v//1.R.v/ < 1/ j Ft �

�DŒ�; ˛; �u; 2�Y ; ��.s � v/ expŒln.
.�2i//.s � v/�

�
dv:

6
Z s

t

EŒX2.v/R.v/2 j Ft � NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � v/� dv

C

Z s

t

EŒX2.v/ j Ft � NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � v/� dv:
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The last term is positive and finite by (5.24). For EŒX2.v/R.v/2 j Ft �, we obtain,
similarly to the derivation of (5.25),

EŒX2.v/R.v/2 j Ft �

D X2.t/R.t/2 expŒ�˛.v�t/�DŒ2�; ˛; 2�u; 2�Y ; ��.v � t / expŒln.
.�2i//.v � t /�

6 X2.t/R2.t/1.R.v/ > 1/DŒ2�; ˛; 2�u; 2�Y ; ��.v � t / expŒln.
.�2i//.v � t /�

CX2.t/1.R.v/ < 1/DŒ2�; ˛; 2�u; 2�Y ; ��.v � t / expŒln.
.�2i//.v � t /�

6 X2.t/.R2.t/C 1/ NDŒ2�; ˛; 2�u; 2�Y ; �� expŒln.
.�2i//.v � t /�:

Hence,

EŒX2.s/Z.s/R.s/ j Ft � 6
Z s

t

X2.t/.R2.t/C 1/ NDŒ2�; ˛; 2�u; 2�Y ; ��

� NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�

D X2.t/.R2.t/C 1/.s � t / NDŒ2�; ˛; 2�u; 2�Y ; ��

� NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�:

Since X.t/ D x;R.t/ D %, we have

EŒX2.s/Z.s/R.s/ j X.t/ D .x; %; z/�

6 x2.t/.%2.t/C 1/.s � t / NDŒ2�; ˛; 2�u; 2�Y ; ��
� NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�: (5.33)

This is clearly positive and finite for s 2 Œt; T �.

For EŒX2.s/Z2.s/ j Ft �

Again, by (5.22) and Fubini’s Theorem, we have

EŒX2.s/Z2.s/ j Ft � 6
c

2

Z s

t

EŒX2.s/R.v/Z.v/ j Ft � dv

C 2cZ.t/

Z s

t

EŒX2.s/R.v/ j Ft � dv

CZ2.t/

Z s

t

EŒX2.s/ j Ft � dv:

The last two terms are found to be positive and finite via the tower property and (5.26)
and (5.24). Hence,

EŒX2.s/Z2.s/ j Ft �

6 c
2

Z s

t

EŒX2.s/R.v/Z.v/ j Ft � dv

D
c

2

Z s

t

EŒR.v/Z.v/EŒX2 j Fv� j Ft � dv
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D
c

2

Z s

t

expŒln.
.�2i//.s � v/�EŒX2.v/R.v/Z.v/ j Ft � dv

6 c
2
X2.t/.R2.t/C 1/ NDŒ2�; ˛; 2�u; 2�Y ; ��

� NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�
Z s

t

.v � t / dv

D
c

4
X2.t/.R2.t/C 1/.s � t /2 NDŒ2�; ˛; 2�u; 2�Y ; ��

� NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�:

We get

EŒX2.s/Z2.s/ j X.t/ D .x; %; z/�

6 c
4
x2.%2 C 1/.s � t /2 NDŒ2�; ˛; 2�u; 2�Y ; ��

� NDŒ�; ˛; �u; 2�Y ; �� expŒln.
.�2i//.s � t /�: (5.34)

This is clearly positive and finite for s 2 Œt; T �. All the terms in (5.21) are finite and
continuous in s. The square integrability of (5.16) follows, and (5.14) is indeed finite.
It follows that the process

� 7!

Z �

t

Z
R

e�rsŒ˚.s; X.s/e� ; R.s/; Z.s// � ˚.s;X.s/; R.s/; Z.s//� QN.ds; d�/

is a martingale. To see that the processes

� 7!

Z �

t

e�rs˚x.s; X.s/; R.s/; Z.s//�YX.s/ dBY .s/;

� 7!

Z �

t

e�rs˚%.s; X.s/; R.s/; Z.s//�uR.s/ dBu.s/

are martingales, note that

Z �

t

e�rs
@˚i

@x
.s; X.s/; R.s/; Z.s//�YX.s/ dBY .s/

D

Z �

t

e�rs˚i .s; X.s/; R.s/; Z.s//�YX.s/ dBY .s/

and

R.s/
@˚i

@%
.s; X.s/; R.s/; Z.s// 6 ˚i .s; X.s/; R.s/; Z.s//: (5.35)

Hence, the martingale property follows, as for (3.19), directly from the finiteness of
(5.20). The statement of the lemma follows.
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6 CONCLUSIONS

We provided a valuation model for the income of selling TGCs, formulated as a sin-
gular stochastic control problem. Our model takes into account the production rate of
renewable energy from a “typical” plant, the market price of TGCs and the cumulative
number of certificates sold. We assumed that the production rate dynamics is given by
an exponential OU process and that the logarithm of the TGC price is a Lévy process.

We found an explicit solution to the control problem, including the optimal selling
strategy. The optimal value is easily calculated by Theorem 3.8 via Lemma 3.3 as
soon as the characteristic function of the logarithmic price is known.

Furthermore, we conducted an empirical analysis on ICAP TGC prices, where a
NIG-distributed Lévy process appeared to be a highly appropriate choice to describe
the dynamics. We also fitted the production rate model to a sample of realized wind
power production in Denmark. The model functioned reasonably well in explaining
the dynamics. Given the fitted models, we observed that the optimal strategy for a
wind power producer in this market is to immediately sell the TGCs granted. We
analyzed further the time value of TGC for a producer and how the mean reversion
in renewable production affects the value of TGCs to be sold.

The models and analysis in this paper can be extended in several ways. First, it
may be highly unrealistic to assume a constant discount rate r over a decade. An
extension could be to assume a stochastic (spot) discount rate of Markovian type (for
example, the Vasicek model). This would create a slightly more involved optimization
problem. We could also investigate the price process model for TGCs, as government
interventions in the TGC market that regulate demand for certificates or structural
changes in the power market (eg, connecting cables, construction of new power plants)
may affect the TGC price dynamics in various ways. A possible extension here would
be to introduce multifactor models, which yield more flexibility in capturing different
stochastic variations in mean, drift and volatility. This would lead to an even more
demanding stochastic control problem to analyze.
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