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Cutting edge: Option pricing

Model-free valuation of barrier options
Peter Austing and Yuan Li provide an analytic formula for valuing continuous barrier options. The model exactly fits the
implied volatility smile in a manifestly arbitrage-free way and produces prices consistent with an underlying stochastic
volatility dynamic

T
he standard approach to valuing continuous barrier options, devel-

oped in the literature by Jex (1999) and Lipton (2002), is to use a

local stochastic volatility (LSV) model. Such models begin with

an underlying stochastic volatility (SV) process, for example, stochastic

alpha, beta, rho (SABR), Heston or a number of other choices. The SV is

first calibrated to give vanilla option prices that closely match the market-

implied volatility smile at one or more expiries. Then, the volatility of the

SV (the volatility of volatility) is reduced by a proportion known as the

mixing fraction, so the smiles generated are flatter than the market. Finally,

a local volatility (LV) correction factor is introduced and calibrated to bring

vanillas back to the correct market prices.

The mixing fraction measures how far the model is between SV (mixing

zero) and LV (mixing one).An added bonus is that, in the mixing zero case,

the LV correction can be used to fill in any mismatch between the pure SV

smile and the true market smile. In practice, the mixing is tuned to match

the price of a one-touch or double no-touch option, and it is often around

one half.

The underlying SV process chosen varies considerably, yet market par-

ticipants agree closely on barrier option prices. Thus, although the true

underlying model is not known, this is not relevant as long as everyone

believes in local stochastic volatility. Such a remarkable fact makes barrier

options safe to trade in large volumes, and they are often treated almost as

flow products.

Consider the reason for the approximate model invariance. It has been

argued by Austing (2014) that this can be explained by the reflection prin-

ciple. If we consider a pure normal SV model with constant rates, and

without spot-volatility correlation, then the reflection principle holds; thus,

valuation depends only on the terminal spot distribution, which is deter-

mined by the implied volatility smile. This remains approximately true

in a lognormal model, and two SV models that generate similar terminal

smile convexities will generate similar barrier option prices. Adding in a

local volatility correction smoothly deforms the price towards the Dupire

(1994) valuation, and so the impact is similar across the underlying SV

models.

Such an argument is heuristic, and we shall not dwell upon it here.

Rather, we take as our starting point the empirical observation that barrier

prices are approximately model-independent within the class of SV mod-

els. Then, if prices do not actually depend on the complex stochastic spot/

volatility dynamics, we are naturally curious to discover if we can remove

it completely and provide an analytic formula for valuation.

The speed of modern computers, together with the realisation that a

simple underlying SV is sufficient, means LSV models are now almost

universally used for quoting barrier prices. Sometimes they are even used

for trading desk risk management. However, enhancements in regulatory

requirements mean trading books must be valued in simulations of increas-

ing size and complexity, and accurate pricing within these simulations

becomes more important. As a result, analytic approaches to valuation are

as interesting as ever.

An analytic approach introduced by Lipton & McGhee (2002) and

Wystup (2003), usually known as the Vanna-Volga method, works by

thoughtfully adding the smile cost of second-order Greeks to the theoret-

ical (flat smile) value. It was the workhorse for foreign exchange trading

desks for a number of years, and particularly appreciated for the intuitive

hedges it provided to traders. However, as the smile adjustment is built

from a small number of vanillas, there are inevitable pricing anomalies

(see Bossens et al 2010; Moni 2011).

Our approach will be to write down a joint probability distribution for the

terminal spot ST and the maximum value of spot in the interval t 2 Œ0; T �,

which we denoteMT . One starting point would be to use a simple copula,

with marginals for ST and MT determined from the volatility smile and

one-touch prices, respectively. This is problematic, because the copula

would need to maintain the crucial relation MT > ST to avoid arbitrage.

Furthermore, as we know empirically that one-touch prices in SV are

determined from the volatility smile, a solution built from a full marginal

for MT is likely to be over-determined.

Instead, we will write down a formula that determines both one-touch

prices and more general barrier option prices directly from the volatility

smile.

Constructing the distribution
We wish to construct a joint probability distribution for ST and MT with

the property that MT > ST , with probability 1. As usual, we would like

our prices to reduce to Black-Scholes when the volatility smile is flat; this

motivates us to begin with a simple Brownian motion, Wt . We define the

maximum to be AT D supt2Œ0;T �Wt , and then the reflection principle

tells us that:

P.WT < x;AT < y/ D

8̂̂
<
ˆ̂:
0; y < 0

N.x/CN.2y � x/ � 1; y > 0; y > x

2N.y/ � 1; y > 0; y < x

(1)

where N.x/ is the cumulative normal function and T D 1.

It is worth taking a moment to examine (1). First, we have zero probabil-

ity when y < 0. This is because the Brownian motion starts atW0 D 0, so

the maximum must always be greater. Later, we will have a similar require-

ment on the maximum versus initial spot,MT > S0. Second, when y < x

the cumulative probability is independent of x, so when we differentiate

we find there is zero probability density in the region WT > AT .

To convert (1) into a copula, we first obtain the marginal distributions

u1 and u2 by taking the large y and large x limits of (1). Inverting these
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Cutting edge: Option pricing

gives us:

x D N�1.u1/ (2)

y D N�1.12 .u2 C 1// (3)

leading to the copula:

C.u1; u2/

D

8<
:
u1 CNŒ2N

�1.12 .u2 C 1// �N
�1.u1/� � 1;

1
2 .u2 C 1/ > u1

u2;
1
2 .u2 C 1/ < u1

(4)

Let us suppose we are provided with marginal distributions P.ST <

K/ D F1.K/, derived from the implied volatility smile, and P.MT <

B/ D F2.B/ from one-touch prices. Then, we can attempt to create a joint

distribution by setting:

u1 D F1.K/ (5)

u2 D F2.B/ (6)

and substituting these into (4).

If we now look at the region 1
2 .u2 C 1/ < u1 in which there is zero

density, this corresponds to:

1
2 .F2.B/C 1/ < F1.K/ (7)

which needs to be true if and only if B < K. We know from the reflection

principle that F1 places a heavy constraint on F2, and, assuming F1 and

F2 are continuous, the constraint in (7) tells us the marginal distribution

of the maximum has to be given by:

F2.B/ D

8<
:
2F1.B/ � 1; F1.B/ >

1
2

0; otherwise
(8)

Thus, we have constructed a joint probability distribution for ST , MT ,

with the property that MT > ST , with probability 1. At this stage, the

marginal for the spot ST matches the input smile, while the marginal

for the maximum MT is a consequence of the construction and does not

necessarily match one-touch prices. We have not yet succeeded in meeting

the other constraint,MT > S0. Instead, the marginal distribution (8) tells

us that MT > F
�1
1 .12 /.

To fix this, we will introduce two parameters, a drift and a volatility, into

the Brownian motion from which we generated our copula. If we consider

a new process:

dXt D � dt C � dWt (9)

and set AT D supt2Œ0;T �Xt , then standard methods show that the joint

distribution (1) becomes:

P.x; y/ D

8̂ˆ̂̂̂<
ˆ̂̂̂̂
:

0; y < 0

N

�
x � �

�

�
� e2y�=�

2

N

�
x � 2y � �

�

�
; y > 0; y > x

N

�
y � �

�

�
� e2y�=�

2

N

�
�y � �

�

�
; y > 0; y < x

(10)

The scaling parameter � is irrelevant for constructing a copula and can

be set to 1. Nevertheless, we shall retain it for reasons that will become

apparent.

To simplify notation, we have denoted the joint distribution P.XT <

x;AT < y/ by P.x; y/, and we denote its two marginals by:

PX .x/ D N

�
x � �

�

�
(11)

PA.y/ D N

�
y � �

�

�
� e2y�=�

2

N

�
�y � �

�

�
(12)

Then, our joint distribution for ST and MT is obtained by substituting:

x D P�1X .F1.K// (13)

y D P�1A .F2.B// (14)

into (10). As before, the marginal distribution for the maximum is deter-

mined from the marginal for the terminal spot by imposing x D y when

K D B . This gives us:

F2.B/ D PAP
�1
X F1.B/ (15)

for the cumulative probability distribution of the maximumMT , or equiv-

alently:

y D P�1X .F1.B// (16)

We need to choose � so that the maximum cannot be lower than the

initial spot, that is, P.MT < S0/ D 0. Since the probability is zero when

y < 0, this means we need to arrange things so that y D 0 when B D S0.

This is achieved by choosing:

� D ��N�1F1.S0/ (17)

To summarise, we have constructed a joint probability distribution

between the terminal spot ST and the maximum MT . The distribution

is given by (10), with x and y given by (13) and (16). The parameter �

scales and can be set to 1. The parameter � is given by (17).

Matching stochastic volatility prices
So far, we have constructed a joint probability distribution between the spot

at expiry, ST , and the maximum of the spot between start time and expiry

time, MT . We can use this distribution to value options that have a con-

tinuous upper barrier and a European payout. The probability distribution

exactly matches the market prices of vanilla options, since the marginal

for ST is an input that can be derived from the market smile. However, the

values of one-touch options are given by the other marginal distribution,

which is an output from the model and not necessarily expected to match

market prices. Our aim in what follows is to extend the model so that one-

touch prices become consistent with an underlying stochastic volatility

model.

Let us denote the distribution we have constructed so far by P�;� . We

recall that it is given by:

P�;� .K;B/ D P.P
�1
X .F1.K//; P

�1
X .F1.B/// (18)

where P.x; y/, PX .x/ and F1 are as defined above. As we have noted,

the parameter � scales and the parameter � is determined by (17), so this

distribution is unique.
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1 Numerical demonstration of the model
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(a) Implied volatility smile. (b) One-touch plot. (c) Joint cumulative distribution. (d) Joint probability density

However, we can easily generate families of distributions by defining,

for example:

Q�1;�1I�2;�2.K;B/ D
1
2P�1;�1.K;B/C

1
2P�2;�2.K;B/ (19)

We have four parameters: �1, �1, �2 and �2. As before, one parame-

ter is redundant through scaling, and one is fixed by the requirement

P.MT < S0/ D 0. A helpful approach is to replace �1 and �2 with

a single parameter ˛:

�1 D .1 � ˛/�atm (20)

�2 D .1C ˛/�atm (21)

to remove the scaling, where �atm is the at-the-money volatility.

Returning to our earlier observation that LSV barrier prices are approxi-

mately independent of the details of the underlying SV model, we mention

that this continues to work even if the SV is reduced to a simple mixture

model. Here, the SV ‘dynamic’ is to select from two constant volatili-

ties at time zero with equal probability. While Piterbarg (2003) elegantly

demonstrates that this model is pathological for general contracts, it has

long been observed that it generates correct barrier prices when incorpo-

rated into LSV and, indeed, as attested by Brigo et al (2015), it is used in

production in a number of major financial institutions. As before, this is a

consequence of the reflection principle.

In order to get realistic SV prices, we are going to extend our original

probability distribution to that generated by a mixture model. Reminiscent

of Brigo & Mercurio (2000), we employ this approach not to use a mixture

model directly, but rather to help us generate an appropriate and tractable

model. We note at the outset that the following approach continues to work

if we extend to a continuum of volatilities. This corresponds to integrating

over the terminal volatility distribution of an arbitrary (correlation-free)

SV model, with an approximation, as the reflection principle is not exact

in the lognormal case.

We can set up our distribution to mimic the mixture model and, therefore,

be sure to generate realistic SV barrier prices. To do so, we choose ˛ so

that a mixture model with two volatility states �1 and �2 generates smile

convexity to match the market-implied volatility smile. For our numerical

results, we choose to define smile convexity using market 25-delta and

75-delta strikes, K25, K75, by calculating:

ST25 D
1
2 .�.K25/C �.K75// � �atm

where � is the market- or model-implied volatility. We then solve numer-

ically for ˛ so that:

STmodel
25 .˛/ D STmarket

25 (22)

Since valuing vanilla options in the mixture model is a simple matter of

averaging the Black-Scholes formula over the two volatilities, this is a

simple procedure.
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2 One-touch prices and densities for the model and two additional values of ˛
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(a) One-touch plot. (b) Joint probability density. (c) Joint probability density: ˛ D 0. (d) Joint probability density: ˛ D 0.6

Having fixed ˛ and, as a result, �1 and �2, we choose:

�1 D ˇ �
1
2�
2
1 (23)

�2 D ˇ �
1
2�
2
2 (24)

and solve numerically for ˇ to achieve P.MT < S0/ D 0. This fully

determines the parameters in the joint probability distribution (19), and

so allows us to price barrier options. If the true underlying market were

a mixture model, then this procedure ensures our constructed probability

distribution would exactly match that market. As a result, since a mixture

market adequately generates SV-style barrier prices, our model will do

the same.

In order to demonstrate the model numerically, we set up a simple

volatility surface in a spreadsheet and generated the classic one-touch

plots of Jex (1999). For simplicity, we defined our implied volatility at

strike K and expiry time T using three parameters, a, b, c:

�2implied.K; T / D

q
ay2 C by C c (25)

where y D log.K=FT / is the log moneyness with respect to the forward

FT .1 Our plots were generated with expiry T D 1 year, spot S0 D 1,

risk-free rate 3% and dividend yield 5%. The volatility parameters were

a D 0:005, b D �0:0005 and c D 0:0001, giving an at-the-money

volatility of 10%, a 25-delta strangle of 0.54% and a 25-delta risk-reversal

of �1:5%. The results are shown in figure 1. With the specified market

data, we calculated ˛ D 0:44 and ˇ D �0:014.

Looking at the one-touch plot in figure 1, we see the familiar moustache

shape, with the model price lower than the local volatility price; this is to

be expected, since our model is a proxy for stochastic volatility. We have

also plotted the joint cumulative distribution betweenMT and ST and the

joint density function. It is interesting to note that there is a sharp change

in density from zero along the lines MT D S0 � 1 and MT D ST . This

1 This implied volatility parameterisation was chosen to be as simple as
possible while satisfying the Lee bounds.
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makes sense, as, for example, the line MT D S0 represents those paths

that spend a brief time around S0 before heading downwards.

The parameter ˛ is fixed to generate stochastic volatility-style prices by

imposing (22). While the ability to obtain SV barrier prices analytically is

a significant step forward, the true market price of a barrier option usually

lies between the stochastic volatility price and the local volatility price.

The most sophisticated market participants use local-stochastic volatility

models to achieve a mixing between SV and LV. This invites the question

of whether we can tune ˛ in order to find a proxy for the LSV price.

Figure 2 shows what happens when we vary ˛. We note that one-touch

prices do not change much. In particular, even when ˛ is zero, so that our

underlying mixture model has no stochasticity, the one-touch prices do

not come close to the local volatility prices. This shows that the parameter

˛ does not act like a mixing between SV and LV. This should not be sur-

prising, as there is no reason to believe the original copula we constructed

earlier in this article would provide a proxy for LV prices.

However, the joint density function, also shown in figure 2, varies dra-

matically with ˛. This is an important point. It means we can construct

families of models that price vanilla options correctly, and match one-touch

prices fairly closely, yet in which other barrier contracts vary significantly.

Thus, the choice of ˛ to satisfy (22) is a crucial part of our model. It is this

choice that allows us to rely on the argument of the underlying mixture

model to obtain meaningful barrier option prices.

An alternative way of generating prices close to LSV is to create a dis-

tribution that mixes true local volatility (calculated by a numerical partial

differential equation solution) with the SV proxy from our model. In prac-

tice, this is as simple as calculating the price in LV and mixing with the

price from our model. While this may leave some feeling uneasy due to the

Piterbarg (2003) hangover, there is probably no need for such qualms. It

is a legitimate means of creating a joint terminal probability distribution,

and it does not suffer from the temporal arbitrage problem.

Conclusion
We have developed an analytic model that generates barrier option prices

that approximate stochastic volatility models. The model provides the joint

cumulative probability distribution of ST and MT , the terminal spot and
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maximum spot, respectively. Thus, certain contracts, such as one-touches

and digital payouts with a continuous barrier, can be valued analytically.

Vanilla payouts with continuous barriers can be valued fast with a single

numerical integration.

The model takes the market-implied volatility smile as an input and

ensures the vanilla options are exactly repriced. This is reminiscent of local

stochastic volatility, in which the local volatility correction adjusts for any

mismatch between the underlying SV smile and the true market smile.

We have emphasised two main assumptions in our model. First, we rely

on the reflection principle and, therefore, have implicitly approximated

the drift in any underlying SV model by a constant. This means we are

assuming interest rates are not strongly varying over time. Similarly, since

we assume a lognormal underlying spot process, volatility contributes

to the drift and this means we are assuming individual volatility paths

generated by the SV are not too strongly varying in time.

The second assumption is that we used an implicit underlying mixture

model to generate the smile convexity. We used the fact that this underly-

ing model is known to generate SV-style barrier prices to argue that our

model is sensible. However, as the mixture model does not have spot-

volatility correlation, it does not generate any skew. Therefore, the skew

fit is achieved entirely through the copula, without reference to any under-

lying dynamic model. The full impact of this remains open, and it would

be interesting to extend to SV models with correlation using the methods

of McGhee & Trabalzini (2014).

In addition to providing an arbitrage-free alternative to Vanna-Volga

and a simple means of generating LSV-style prices by mixing with local

volatility, it is pleasing to see a simple analytic explanation for the classic

one-touch moustaches. Indeed, those who are energetic enough could use

the formula to generate continuous vanilla hedge portfolios to improve on

the classic trader rules.�
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