
Organisations including software vendors, banks and insurance
companies that produce and maintain code are enticed on a
regular basis to rewrite their legacy mathematical code with the
aim of optimising it or adapting it to recent technology advances
in machine hardware or coding languages.

Initiatives of this kind rarely see the light of day when the
benefits are compared to the eventual cost of implementing it.
However, the availability of graphics processing units (GPUs) will
finally tip the balance in favour of an in-depth overhaul of code. In
our opinion, with the aid of GPU, there are four main reasons for
code to be rewritten:

First, the performance gains are incomparable to those achievable
today, even those that can be envisaged in the coming years.
Second, the one-year-old standardised coding language
(OpenCL™) shows that GPU is a sustainable development field.
Third, a closer relationship between the code and the machine
makes code optimisation easier.
Last, but not least, a quasi-paradox: more precise numerical
algorithms that are commonly used in financial mathematics.

Performance gain
Monte-Carlo simulations are the obvious beneficiaries of GPU
technology. The financial world is a heavy user of the Monte-Carlo
method for exotic pricing – path-dependent products, multi-asset
payoffs or, quite simply, models that have more than three factors –
and, for other fields like value-at-risk, potential future exposure.

Such a resolution method is particularly well-suited to GPU
architecture because:

 each path performs the same operations;
each path is independent from other paths; and
the calculation of the paths’ average and their distributions can
also be parallelised.

Depending on the type of model or underlying (for example,
single stock or constant maturity swap index), performance gains
using Murex analytics range between 60 and 250 times faster (see
figure 1).

Today, GPUs are significantly faster than central processing units
(CPUs) and this situation will not change in the coming years. Even
more, the gap between GPU and CPU continues to widen, as it has
over the past three years. Throw grid computing into the mix, and
performance gains can be multiplied with a grid server of GPUs.

What can be done with all this spare capacity?
Big market players known to be early adopters of this solution have
taken advantage of GPUs to execute near-time heavy risk analysis,
previously only possible on a daily basis, and have pushed Monte
Carlo over a million paths to have stabilised Greeks.

Partial differential equation, above all else
Our first-preference resolution method is analytical formulae and
the default choice is evidently partial differential equation (PDE);
Monte-Carlo simulations are a last resort.

Indeed, with the same amount of calculations, the PDE will
always be more precise with smoother sensitivities. This resolution

Graphics processing units are set to finally tip the balance in favour of rewriting legacy
mathematical code. Murex shares the benefits of such an in-depth overhaul – gains in
performance, a standardised programming language, easier optimisation and improved
precision – which have placed the solutions provider ahead of the game and fully GPU-compliant

Tipping point: The performance benefits
of GPUs put an elephant on the scales

1 Monte Carlo performance gains based on different
underlyings and a comparison of models using a Xeon
CPU and NVIDIA Tesla C2050 GPU

MACS

MACS

Performance gain factor between CPU 1 core and GPU

0 50 100 150 200 250 300

EQD autocall with
det vol 1m paths

EQD basket with
local vol 1m paths

EQD Asian 365 �xing with
det vol 1m paths

CMS Spread with
BGM vol sto 1m paths

CMS Spread with
HJM 2F 2m pathsFor r

eview only

NOT FOR REPRODUCTIO
N

method is particularly well-suited to high-volume first-generation
exotic payoffs like auto-callables and Bermudan swaptions.
Moreover, merely adapting the Monte Carlo for GPU will lead us to
heterogeneous hardware architecture – different hardware for PDE
and Monte-Carlo calculations.

Nonetheless, calculating the PDE on GPU faces two main challenges:
First, one PDE is not enough to make full use of GPU cores.
Second, normal resolution methods for PDE rely on an inverted
tridiagonal matrix – which typically cannot be parallelised – like,
for example, the Gaussian elimination method.

The first challenge can be addressed by modifying the calculation
sequence: the present value of the payoff and its numerous
sensitivities will be evaluated simultaneously rather than sequentially.
The resolution of the second challenge relies on new matrix-
inversion techniques like parallel cyclic reduction1 (PCR), albeit more
computationally intensive, these techniques can be parallelised.

The resulting performance gain is in the region of 40 for one-
dimensional PDEs and eight for two-dimensional PDEs. In addition,
NVIDIA’s latest Tesla 20-series Fermi provides particularly promising
capabilities for PDE resolution using GPU due to the increased
shared memory and higher double-precision performance.

A standardised language
The release of OpenCL™ in April 2009 as a standardised
programming language on GPU is a real breakthrough. Derived
from CUDA C, the language developed by NVIDIA, Open CL has
become a market standard. It brings sustainability to the GPU
solution by liberating it from hardware-vendor dependencies, even
rendering it compatible with multicore CPU x86 and Power.

The production cycle of software (code-writing, functional
validations, documentation, maintenance, support team training),
being slower than that of hardware vendors, was sine qua non to
massive investment in a development team – a condition that has
now been satisfied.

Finally, all original equipment manufacturers such as Hewlett
Packard, IBM® or Dell™ are now integrating passively cooled GPU
modules into their servers, in compliance with all data-centre
requirements. In effect, GPU is no longer reserved for teenage
gamers, but has become an industry-ready, battle-tested,
sustainable product.

Closer to the machine
Programming in typical programming languages that run on CPUs
hide fundamental complexities as they depend on the compiler –
the use of the machine is not explicit. Such programs are therefore
difficult to optimise apart from the optimisation of the algorithm

itself. Relying on the compiler is not sufficient. This is not the case
for programs using GPU, despite – and thanks to – the fact they are
more difficult to write since they are closer to the hardware, they
become easier to optimise.

Keep in mind three areas where the benefits are most evident: cache
management, synchronisation and explicit operations on vectors.

More precision
The quasi-paradox: allowing the use of computationally intensive
but more precise algorithms in PDE while still benefiting from
performance gains. As an illustration, take the common example in
finance of a two-factor model solved in PDE. The use of alternating
direction implicit/vector-splitting techniques is required to
eliminate cross-term derivatives. Such predictor/corrector
techniques can lead to poor precision of the resolution method.

More precise methods exist, such as iterative methods, but are
more computationally costly. However, such methods can be
parallelised and can therefore run on GPU, still giving performance
improvements. At the end of day, we have our cake and eat it too:
more precision and better performance for two-dimensional PDE.

Two iterative methods have attracted our attention to date:
Multigrid2 – the use of a smaller (coarse) PDE to resolve a large
(fine) one
The Schwarz method3 – sandwiching the PDE grid in sub-grids
and resolving them in parallel.

Conclusion
Dividing hardware cost by 10, power consumption by 20 and
valuing financial products 200 times faster sums up the amazing
benefits of going massively for GPUs and explains why Murex has
undergone such an important effort for the past three years. We
have already rolled-out this technology for exotic products and
potential future exposure and will soon include vanillas.

Murex will release the result of this work at the GPU Technology
Conference 2010, organised by NVIDIA in San José from 20–23
September, under the title Practical Methods beyond Monte Carlo
in Finance.

More info: gpu@murex.com

1 S Yao Zhang, Jonathan Cohen & John D Owens, “Fast tridiagonal solvers on the GPU”, in
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP 2010), pp. 127–136, January 2010. DOI: 10.1145/1693453.1693472

2 William L Briggs, A Multigrid Tutorial
3 Martin J Gander, Schwarz Domain Decomposition Methods in the Course of Time, University of

Geneva, February 2009

SPONSORED STATEMENT

2 a – b = 1 x ½
– 1 a + 2 b – 1 c = 1 x 1

– b + 2 c – d = 1 x ½ x ½
– 1 c + 2 d – 1 e = 1 x 1

– d + 2 e – 1 f = 1 x ½ x ½
– 1 e + 2 f – 1 g = 1 x 1

– 1 f + 2 g = 1 x ½

+ 1 b – ½ d = 2 x ½
– ½ b + 1 d – ½ f = 2 x 1

– ½ d + 1 f = 2 x ½

½ d = 4

Figure 2.indd 1 25/8/10 14:54:56

2 Inversion of a tridiagonal matrix with the PCR method

3 CPU versus GPU on a one-dimensional PDE for a
callable bond

For r
eview only

NOT FOR REPRODUCTIO
N

