
A Willow tree construction

Now, we give details on the constructions of the willow tree for three popular stochastic
processes, such as the geometric Brownian motion (GBM), Merton’s jump-diffusion (MJD)
(Merton, 1976) and Heston’s stochastic volatility (HSV) (Heston, 1993) models.

A.1 Geometric Brownian motion

Assume the underlying asset price St under the Q measure are governed by the stochastic
differential equation (SDE)

dSt = rStdt+ σStdWt (A.24)

where r is the risk-free interest rate, Wt is the standard Brownian motion, σ is the constant
volatility. The value of St at t can be estimated as

St = S0 exp

{(
r − σ2

2

)
t+ σWt

}
. (A.25)

Thus, the discrete asset price Sni at tn can be estimated as

Sni = S0 exp

{(
r − σ2

2

)
tn + σ

√
tnzi

}
, for i = 1, ...,m. (A.26)

where zi is the discrete value chosen from the standard normal distribution following the
sample strategy in Xu et al. (2013). According to Xu et al. (2013), a sequence of {(zi, q̂i)},
i = 1, 2, · · · ,m, is generated to approximate the standard normal distribution, where zi is
some discrete value of the standard normal distribution and q̂i is the corresponding proba-
bility of zi.

The transition probability from Sni to Sn+1
j , pnij , can then be estimated as (Lu and Xu,

2017)

pnij = P (Y n+1
j |Y n

i ) =

∫ cn+1
j+1

cn+1
j

f(y|Y n
i ) dy, for i, j = 1, ...,m,

where Y n
i ≡

√
tnzi, c

n+1
j = (Y n+1

j + Y n+1
j−1 )/2, cn+1

j+1 = (Y n+1
j+1 + Y n+1

j )/2, cn+1
1 = −∞,

cn+1
m+1 = +∞ for j = 1, 2, ...,m, and f(y|Y n

i ) is the conditional probability density function
for a normally distributed random variable y at tn+1, given Y n

i , i.e.,

f(y|Y n
i ) =

1√
2π∆t

exp

{
−(y − Y n

i )2

2∆t

}
,

for n = 1, ..., N − 1. The transition probability from S0 to S1
j , qj , can be determined by

qj = P (Y 1
j |Y 0) =

∫ c1j+1

cnj

f(y) dy,

where f(y) = 1√
2π∆t

exp
{
− y2

2∆t

}
.
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A.2 Merton’s jump-diffusion model

Assume the underlying asset price St follows a jump-diffusion process (Merton, 1976) as

dSt
St

= (r − λ̃k̄)dt+ σdWt + [Yt − 1] dNt,

where r is the constant risk-free interest rate, Wt is the standard Q-Brownian motion, k̄ =
E[Yt − 1], lnYt ∼ N(αJ , σ

2
J), and Nt follows the Poisson process with constant intensity λ̃.

The first four moments of the log-return of St, Xt = ln(St/S0) can be computed analytically
(Ballotta and Kyriakou, 2015) as

Mean = [r − σ2

2 − λ̃(eαJ+σ2
J/2 − 1) + λ̃αJ ]t

Variance = (σ2 + λ̃α2
J + λ̃σ2

J)t

Skewness =
λ̃(α3

J + 3αJσ
2
J)

√
t(σ2 + λ̃α2

J + λ̃σ2
J)3/2

Kurtosis =
λ̃(α4

J + 6α2
Jσ

2
J + 3σ4

J)

t(σ2 + λ̃α2
J + λ̃σ2

J)2
+ 3.

(A.27)

The Johnson curve transformation (Johnson, 1949) transforms a standard normal variable
into an arbitrary random variable via matching the first four moments. The nodes are set
to be

Xn
i = εg−1

(
zi − γ
δ

)
+ ν, (A.28)

where the parameters γ, δ, ν and ε can be determined by the algorithm proposed in Hill and
Holder (1976), zi are the discrete values of the standard normal distribution and the function
g−1(u) is defined by

g−1(u) =


eu for the lognormal family,
eu−e−u

2 for the unbounded family,
1

1+e−u for the bounded family,

u for the normal family.

(A.29)

The m possible log-returns Xn
i , i = 1, 2, · · · ,m, are selected to match the first four moments

of Xtn by the Johnson curve transformation. The key in sampling Xn
i is to select {zi} from

the standard normal distribution. The corresponding underlying asset prices Sni on the wil-
low tree can then be calculated as Sni = S0 exp(Xn

i ).

The transition probability pnij from Xn
i to Xn+1

j can be estimated by (Xu and Yin, 2014)

pnij = P (A < Xn+1
j < B|Xn

i ) =

∫ Cn+1
j+1

Cn+1
j

∞∑
l=0

e−λ̃∆t(λ̃∆t)l

l!

1√
2πσl

exp

[
−(x− µl)2

2σ2
l

]
dx,

(A.30)
where Cn+1

j = (Xn+1
j−1 + Xn+1

j )/2, Cn+1
j+1 = (Xn+1

j+1 + Xn+1
j )/2, Cn+1

1 = −∞, Cn+1
m+1 = +∞,

µl = Xn
i + (r − λ̃k̄ − σ2/2)∆t+ lαJ and σ2

l = σ2∆t+ lσ2
J .
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A.3 Heston’s stochastic volatility model

Assume the underlying asset price St follows a Heston stochastic volatility model (Heston,
1993) {

dSt = µStdt+
√
vtStdW

1
t ,

dvt = η($ − vt)dt+ σv
√
vtdW

2
t ,

(A.31)

where r is the risk-free interest rate, $ is the long-term mean of variance, η is a mean-
reverting speed parameter of the variance, σv is the so-called volatility of volatility. The two
Wiener processes dW 1

t and dW 2
t are assumed to be correlated with a constant correlation

coefficient ρ, that is EQ[dW 1
t dW

2
t ] = ρdt. To ensure the variance is always positive, the

Feller condition must be satisfied, i.e., 2η$ ≥ σ2
v .

When the Feller condition is satisfied, the details of a two-dimensional willow tree con-
struction for St and vt can be referred in Ma et al. (2020b). In summary, the willow tree
consists of the tree nodes, that are pairs of possible values of St and vt, (Sni , v

n
i1

), at time
tn = n ·∆t, where i = 1, 2, · · · ,m and i1 = bi/mxc+ 1, mx is the number of possible values
of St at tn given a possible value of vt and bac returns the largest integer less than a, and
the transition probability between (Sni , v

n
i1

) at tn and (Sn+1
j , vn+1

j1
) defined as pnij .

When the Feller condition is violated, the variance in the Heston model could be negative
in our willow tree or Monte Carlo simulation. In this paper, we adopt the adaptation
in Cozma and Reisinger (2020) to set the negative variance to be zero. For example, at
tn ≡ n∆t, one of the variance on the willow tree, vni1 , is negative, i.e., vni1 < 0. We first set it
to be zero, i.e., vni1 = 0. Then, the transition probability from tree node at tn, (Sni , v

n
i1

), to

the tree nodes, (Sn+1
j , vn+1

j1
), at tn+1, pnij , can be determined as

pnij =


1 if lnSni + r∆t ∈ [

lnSn+1
j +lnSn+1

j−1

2 ,
lnSn+1

j +lnSn+1
j+1

2 ]

and η$∆t ∈ [
vn+1
j1

+vn+1
j1−1

2 ,
vn+1
j1

+vn+1
j1+1

2 ]
0 otherwise

,

given vni1 = 0 for j = 1, 2, · · · ,m and j1 = bj/mxc+ 1.

B Proof of Proposition 1

Proof. Equation (3.6) can be written as

exp

(
− θ

1−R
(n+ 1)∆t

)
= E

[
exp

(
−

n∑
k=0

∫ tk+1

tk

α(t, V )dt

)]

≈ E

[
exp

(
−

n∑
k=0

αk∆t

)]
. (B.32)
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where αk , α(tk, V
k). Dividing both sides of the equation (B.32) by exp(− θ

1−R(n+ 1)∆t),
we have

1 = E

[
exp

(
−

n∑
k=0

αk∆t+
θ

1−R
(n+ 1)∆t

)]

= E

[
n∏
k=0

exp

(
−αk∆t+

θ

1−R
∆t

)]

= E

[
n∏
k=0

ηk

]
, (B.33)

where ηn , exp
(
−αn∆t+ θ

1−R∆t
)

.

For n = 0, according to (B.33), we have

E[η0] = exp

(
−α0∆t+

θ

1−R
∆t

)
= 1,

i.e., α0 = exp(a0 + bV 0) = θ
1−R .

For n = 1, we have

E[η0η1] = E[η1] =
m∑
i=1

qiη
1
i = 1.

Let w1
i = qi, and we obtain equation (3.8).

For n > 1, on the one hand,
m∑
i=1

wni η
n
i can be written as, based on the definition of wni
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(B.34)

On the other hand, due to η0 = 1, E[
n∏
k=0

ηk] can be expressed discretely in the willow

tree framework as the sum of
n∏
k=1

ηkjk with probability qj1
n−1∏
k=1

pkjkjk+1
for each j1, j2, ..., jn =

1, 2, · · · ,m, i.e.,
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Then, according to (B.34), (B.35) and (B.33), we have

m∑
i=1

wni η
n
i = E[

n∏
k=0

ηk] = 1.

Thus, we have proved equation (3.8).
2
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