
Cutting edge: Volatility

The quadratic rough Heston model
and the joint S&P 500/Vix smile
calibration problem

Fitting SPX and Vix smiles simultaneously is one of the most challenging problems in volatility modelling. A long-standing conjecture is

that it may not be possible to jointly calibrate these two quantities using a model with continuous sample paths. Jim Gatheral, Paul Jusselin
and Mathieu Rosenbaum present the quadratic rough Heston model as a counterexample to this conjecture. The key idea is the combination

of rough volatility with a price-feedback (Zumbach) effect

T he volatility index, or Vix, was introduced in 1993 by the Chicago
Board Options Exchange (CBOE for short). It was originally
designed, according to the CBOE, to ‘measure the market’s expec-

tation of 30-day volatility implied by at-the-money [Standard & Poor’s 100]
index option price’ (see CBOE 2019). Since 2003, the Vix has been redefined
as the square root of the price of a specific basket of options on the Standard
& Poor’s 500 index (SPX) with maturity 30 days. The basket coefficients are
chosen so that, at any time t , the Vix represents the annualised square root
of the price of a contract with payout equal to �2=� log.StC�=St /, where
� D 30 days and S denotes the value of the SPX. Consequently, it can be
formally written via risk-neutral expectation in the form:
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where .Ft /t>0 is the natural filtration of the market.
Since 2004, investors have been able to trade Vix futures. To quote CBOE

(2019), they ‘provide market participants with a variety of opportunities to
implement their view using volatility trading strategies, including risk man-
agement, alpha generation and portfolio diversification’.1 Subsequently, in
2006, the CBOE introduced Vix options:

providing market participants with another tool to manage
volatility. Vix options enable market participants to hedge port-
folio volatility risk distinct from market price risk and trade
based on their view of the future direction or movement of
volatility.2

Those products are now among the most liquid financial instruments in the
world. Indeed, more than 500,000 Vix options are traded each day, with
most of the liquidity concentrated on the first three monthly contracts.

Although more vega is now traded in the Vix market than in the SPX
market, the wide bid-ask spreads in the former betray its lack of maturity. One
of the reasons behind these wide spreads is the market lacks a reliable pricing
methodology for Vix options. Since the Vix is, by definition, a derivative of
the SPX, any reasonable methodology must necessarily be consistent with
the pricing of SPX options. Designing a model that jointly calibrates SPX

1 See also https://bit.ly/39EsFm0.
2 See https://bit.ly/2X5jjx9.

and Vix options prices is known to be extremely challenging. Indeed, this
problem is sometimes considered to be the holy grail of volatility modelling.
We will simply refer to it as the joint calibration problem.

The joint calibration problem has been extensively studied by Julien
Guyon, who provides a review of various approaches (Guyon 2019b). We
can split the different attempts to solve it into three categories. In what is
probably the most technical and the most original proposal, as well as the
first to have succeeded in obtaining a perfect joint calibration, the problem
is interpreted as a model-free constrained martingale transport problem, as
initially observed by De Marco & Henry-Labordere (2015). Using this view-
point, Guyon (2019b) manages to get a perfect calibration of a Vix options
smile at time T1 and a SPX options smile at T1 and T2 D T1 C 30 days. As
noted by the author, although this methodology can theoretically be extended
to any set of maturities, it is much more intricate in practice because of the
computational complexity involved.

This drawback is avoided in the second and third approaches Guyon
(2019b) outlines, where the models are in continuous time. Such models have
the advantage of relying on observable properties of assets, and so allow for
practical intuition regarding their dynamics. The second approach involves
attempting joint calibration with models where SPX trajectories are continu-
ous (see, in particular, Goutte et al 2017). Unfortunately, as of yet, continu-
ous models have not been completely successful in this task. An interpretation
for this failure is given by Guyon (2019b), who explains

the very large negative skew of short-term SPX options, which
in continuous models implies a very large volatility of volatil-
ity, seems inconsistent with the comparatively low levels of Vix
implied volatilities.

To circumvent this issue, it is then natural to think of rough volatility models,
as recently introduced by Gatheral et al (2018). However, these models also
appear to have been unsuccessful thus far (see Guyon 2018).

The last approach is to allow for jumps in the dynamic of the SPX (see
Baldeaux & Badran 2014; Cont & Kokholm 2013; Kokholm & Stisen 2015;
Pacati et al 2018; Papanicolaou & Sircar 2014). By doing so, one can rec-
oncile the skewness of SPX options with the level of Vix implied volatili-
ties. Nevertheless, besides those of Cont & Kokholm (2013) and Pacati et al
(2018), existing models with jumps do not really achieve a satisfying accuracy
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Cutting edge: Volatility

for the joint calibration problem. Specifically, most of them fail to reproduce
Vix smiles for maturities shorter than one month.

As an aside, even though some models with jumps may satisfactorily
resolve the joint calibration problem, they are unsatisfactory in other respects.
For example, perfect hedging is not possible in such models; in contrast,
under rough volatility derivatives, hedging is fully understood: this is shown
by El Euch & Rosenbaum (2018, 2019). Moreover, jumps are conventionally
modelled as Lévy jumps, giving rise to unrealistic model time series proper-
ties that are at odds with those observed empirically, specifically the clustering
of large moves in the underlying. One might imagine trying to fix the latter
problem by modelling with self-exciting jump processes, but, in the end, that
would lead back to rough volatility models, which can be regarded as special
limits of self-exciting jump processes.

In summary, according to Guyon (2019b), despite many efforts:

so far all the attempts at solving the joint SPX/Vix smile cal-
ibration problem [using a continuous time model have] only
produced imperfect, approximate fits.

In particular, regarding continuous models, Guyon concludes: ‘joint calibra-
tion seems out of the reach of continuous-time models with continuous SPX
paths’. In this article, we provide a counterexample to this conjecture: namely,
a model with continuous SPX and Vix paths that enables us to fit SPX and
Vix options smiles simultaneously.

Rough volatility and the Zumbach effect

Recently, rough volatility models – where volatility trajectories, though con-
tinuous, are very irregular – have generated a lot of attention. The reason for
this success is the ability of these very parsimonious models to reproduce all
of the main stylised facts of historical volatility time series and to fit SPX
options smiles (see Bayer et al 2016; El Euch et al 2019b; Gatheral et al
2018). One particularly interesting rough volatility model is the rough Hes-
ton model introduced in El Euch & Rosenbaum (2019). As its name suggests,
it is a rough version of the classical Heston model. This model arises as the
limit of natural Hawkes process-based models of price and order flow (see,
for example, Jusselin & Rosenbaum 2018). Moreover, there is a quasi-closed-
form formula for the characteristic function of the rough Heston model, just
as in the classical case. So, fast pricing of European options is possible (see
El Euch et al (2019b) and the references therein).

Despite these successes, a subtle question raised by Jean-Philippe Bou-
chaud remains: can a rough volatility model reproduce the so-called Zum-
bach effect? This is the observation originally due to Gilles Zumbach (see
Zumbach 2009, 2010) that financial time series are not time-reversal invari-
ant. To answer this question, we introduce two notions, each of which cor-
responds to different aspects of the Zumbach effect:
� The weak Zumbach effect:3 past-squared returns forecast future-integrated
volatilities better than past-integrated volatilities forecast future-squared
returns. This property is not satisfied in classical stochastic volatility mod-
els. However, rough stochastic volatility models are consistent with the weak
Zumbach effect: see El Euch et al (2019a) for explicit computations using a
rough Heston model.

3 This is typically considered in the econophysics literature; see Zumbach (2009).

� The strong Zumbach effect: conditional dynamics of volatility with respect
to the past depend not only on the past volatility trajectory but also on
the historical price path. Specifically, price trends tend to increase volatil-
ity (see Zumbach 2010). Such feedback of the historical price path on
volatility also occurs on implied volatility, as illustrated by Zumbach (2010).
Rough stochastic volatility models such as the rough Heston model are
not consistent with the strong Zumbach effect (see El Euch & Rosenbaum
2018).

The quest for a rough volatility model consistent with the strong Zum-
bach effect and the empirical success of quadratic Hawkes process-based
models documented by Blanc et al (2017) led to the development of super-
Heston rough volatility models (Dandapani et al 2019). These extensions
of the rough Heston model arise as limits of quadratic Hawkes process-
based microstructural models, just as the rough Heston model arises as
the continuous-time limit of a linear Hawkes process-based microstructural
model.

The idea of using super-Heston rough volatility models to solve the joint
calibration problem came after a presentation by Julien Guyon at École Poly-
technique in March 2019. In this talk, Guyon highlighted a necessary con-
dition for a continuous model to fit SPX and Vix smiles simultaneously:
the inversion of convex ordering between volatility and the local volatil-
ity implied by option prices (see Guyon 2019a). The intuition behind this
condition could be reinterpreted as some kind of strong Zumbach effect. It
was therefore natural for us to investigate the ability of super-Heston rough
volatility models to solve the joint calibration problem.

The quadratic rough Heston model

The quadratic rough Heston model we consider is essentially a special case
of the super-Heston rough volatility models of Dandapani et al (2019).
The joint dynamics of the asset S (here, the SPX) and its spot variance V

satisfy:

dSt D St

p
Vt dWt

Vt D a.Zt � b/2
C c

where W is a Brownian motion and a, b and c are positive constants. This
model is of rough Heston type, in the sense that weighted past price returns
are drivers of the volatility dynamics. More precisely:

Zt D

Z t

0
.t � s/˛�1 �

� .˛/
.�0.s/ � Zs/ ds

C

Z t

0
.t � s/˛�1 �

� .˛/
�
p

VsdWs (2)

with ˛ 2 .1=2; 1/, � > 0, � > 0 and �0 a deterministic function. In this
special case of a super-Heston rough volatility model, the asset S and its
volatility depend on the history of only one Brownian motion. The model is
thus a pure feedback model; volatility is driven only by the price dynamics,
with no additional source of randomness. In general, of course, the volatility
process does not need to depend only on the Brownian motion driving the
asset price S . For simplicity, we will refer to (2), a pure feedback version
of a super-Heston rough volatility model, as the quadratic rough Heston
model.

2 risk.net May 2020

Cop
yri

gh
t In

fop
ro

 D
igi

tal
 M

ed
ia 

Se
rvi

ce
s



Cutting edge: Volatility

As in the general case of super-Heston rough volatility models, because the
effect of past returns on Z cannot be reduced to an influence of past volatility
dynamics on Z, the quadratic rough Heston model also exhibits the strong
Zumbach effect (see Dandapani et al (2019) for more details).
� The quadratic rough Heston process. The process Zt may be under-
stood as a weighted moving average of past price log returns. Indeed, from
El Euch & Rosenbaum (2018, lemma A.1), we have:

Zt D

Z t

0
f ˛;�.t � s/�0.s/ ds

C

Z t

0
f ˛;�.t � s/�

p
Vs dWs

where f ˛;�.t/ is the Mittag-Leffler density function defined for t > 0

as:

f ˛;�.t/ D �t˛�1E˛;˛.��t˛/

with:

E˛;ˇ .z/ D

X
n>0

zn

� .˛n C ˇ/

The variable Zt is therefore path-dependent: a weighted average of past
returns of the type typically considered in path-dependent volatility models.
As explained by Guyon (2014), modelling with path-dependent variables is
a natural way to reproduce the fact that volatility depends on recent price
changes. However, the kernels used to model this dependency are typically
exponential. Here, a crucial idea – motivated by our previous work (Danda-
pani et al 2019) – is to use a rough kernel: more precisely, to use the Mittag-
Leffler density function. Thanks to this kernel, the ‘memory’ of Z decays as
a power law, and Z is highly sensitive to recent returns since:

f ˛;�.t/ �
t!C1

˛

�� .1 � ˛/
t�˛�1

and

f ˛;�.t/ �
t!0C

�

� .˛/
t˛�1

This essentially means long periods of trends or sudden upwards or down-
wards moves of the price generate large values for jZj and, thus, high volatil-
ity, particularly when Z is negative. Such a link is clearly observable in the
data: see figure 1, where the Vix spikes almost instantaneously after large
negative returns of the SPX, before decreasing slowly afterwards. In figure 2,
we plot an example of sample paths of the SPX and the Vix in our model.
The feedback of negative price trends on volatility is very well reproduced.
Finally, the choice of f ˛;� as kernel ensures the volatility process is rough,
with a Hurst parameter equal to:

H D ˛ � 1=2

As shown by Gatheral et al (2018), this enables us to reproduce the behaviour
of both the historical volatility time series and the SPX implied volatility
surface, provided H is taken to be of order 0:1.

As explained above, an immediate consequence of the feedback effect is
negative price trends generating high volatility levels. However, such trends
also impact the instantaneous variance of volatility in our model. To see this,
consider the classical case with ˛ D 1. In that case, an application of Itô’s

1 SPX (in blue) and Vix (in red) from November 25, 2004 to November 25,

2019
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formula gives this up to a drift term:

dVt D 2a.Zt � b/��
p

Vt z dWt

Thus, the ‘variance of instantaneous variance’ coefficient is proportional to
a.Zt � b/2, which up to c is equal to the variance of log S . Thus, when
volatility is high, the volatility of volatility is also high. In particular, con-
ditional on a large downwards move in SPX, we would expect V to be
high along with the volatility of V . This explains why our model generates
upwards-sloping Vix smiles.

We remark that incorporating the influence of price trends on volatility
and on the instantaneous variance of volatility is the main motivation under-
lying the model of Goutte et al (2017). That model, although not solving
the joint calibration problem, is probably the best of the continuous mod-
els introduced so far. In this switching model, the price follows a classical
Heston dynamic, where the parameters can change depending on the value
of a hidden Markov chain with three states. It is motivated by a 100-day
rolling calibration of the classical Heston model performed by the authors
(see Goutte et al 2017, figure 2). This rolling calibration suggests volatil-
ity, leverage and volatility of volatility are higher in periods of crisis. Hence,
Goutte et al introduce a Markov chain to trigger crisis phases and switch
the parameters of the Heston model depending on the situation. The three
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Cutting edge: Volatility

3 Implied volatility on SPX options for May 19, 2017
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The blue and red points are, respectively, the bid and ask of market implied volatilities. The implied volatility smiles from the model are green. The strikes are in

logmoneyness, and T is time to expiry in years

possible states of the chain can therefore be interpreted as corresponding to
the following situations:

� flat or increasing SPX;

� transition phase between flat SPX and crisis;

� crisis with dramatically decreasing SPX.

The Markov chain of Goutte et al (2017) can therefore be seen as an ad hoc
version of the process Z in the quadratic rough Heston model.
� Parameter interpretation. The parameters a, b and c in the specifica-
tion:

Vt D a.Zt � b/2
C c

can be interpreted in the following way.
� c represents the minimal instantaneous variance. When calibrating the
model, we use c to shift the smiles of SPX options upwards or down-
wards.
� b > 0 encodes the asymmetry of the feedback effect. Indeed, for the same
absolute value of Z, the volatility is higher when Z is negative than when it is
positive. Such asymmetry aims at reproducing the empirical behaviour of the
Vix. This is illustrated in figure 1, where we can observe that the Vix spikes
when the SPX tumbles down, but not after it goes up. From a calibration
point of view, the higher b, the more SPX options smiles are shifted to the
right.
� a is the sensitivity of the volatility to the feedback of price returns. The
greater a, the greater the role of feedback in the model, and the higher the
volatility of volatility. Consistent with this, SPX smiles become more extreme
as a increases.

� Infinite-dimensional Markovian representation. Although the quad-
ratic rough Heston model is not Markovian in the variables .S; V /, it does
admit an infinite-dimensional Markovian representation. Inspired by the
computations of El Euch & Rosenbaum (2018), we obtain that, for any t

and t0 positive:

Zt0Ct D

Z t

0
.t � s/˛�1 �

� .˛/
.�t0.s/ � Zt0Cs/ ds

C

Z t

0
.t � s/˛�1 �

� .˛/
�
p

Vt0Cs dWt0Cs (3)

where �t0 is a Ft0 -measurable function. More precisely, �t0 is given by:

�t0.u/ D �0.t0 C u/ C
˛

�� .1 � ˛/

�

Z t0

0
.t0 � v C u/�1�˛Zvz dv

Equation (3) implies the law of .St ; Vt /t>t0 only depends on St0 and �t0 .
In view of (1), and using the same methodology as in El Euch & Rosen-
baum (2018), it means we can express the Vix at time t as a function of
�t and St . Consequently, we can write the price of any European option
with payout depending on the SPX and the Vix as a function of time, S and
� .

Numerical results

In this section, we illustrate how successfully we can fit both SPX and Vix
smiles on May 19, 2017, one of the dates considered by El Euch et al (2019b)
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Cutting edge: Volatility

4 Implied volatility on Vix options for May 19, 2017
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that is otherwise randomly chosen.4 We focus on short expirations, from two
to five weeks, where the bulk of Vix liquidity is found. Moreover, short-dated
smiles are typically fitted poorly by conventional models.

In the quadratic rough Heston model, the function �0.�/ needs to be cali-
brated to market data. In the rough Heston model, there is a simple bijection
between �0.�/ and the forward variance curve. In the quadratic rough Hes-
ton model, this connection is more intricate; for simplicity, then, we choose
the following restrictive parametric form for Z:

Zt D Z0 �

Z t

0
.t � s/˛�1 �

� .˛/
Zs ds

C

Z t

0
.t � s/˛�1 �

� .˛/
�
p

Vs dWs

which is equivalent to taking:

�0.t/ D
Z0

�� .1 � ˛/
t�˛

Allowing �0.�/ to belong to a larger space would obviously lead to even better
results, but it would require a more complex calibration methodology. Thus,
we are left to calibrate the parameters � D .˛; �; a; b; c; Z0/. We use the
following objective function:

F.�/ D
1

#OSPX

X
o2OSPX

.�o;mid
� �o;�/2

C
1

#OVix

X
o2OVix

.�o;mid
� �o;�/2;

4 Market data is from OptionMetrics via Wharton Data Research Services
(WRDS).

where OSPX is the set of SPX options; OVix is the set of Vix options; �o;mid

denotes the market ‘mid’ implied volatility for the option o; and �o;� is the
implied volatility of the option o in the quadratic rough Heston model, with
parameter � obtained by Monte Carlo simulations. To calibrate the model,
we minimise the function F over a grid centred around an initial guess �0.

We obtain the following parameters:5

˛ D 0:51

� D 1:2

a D 0:384

b D 0:095

c D 0:0025

Z0 D 0:1

(4)

The corresponding SPX and Vix options smiles are plotted in figures 3
and 4.

Despite the fact that our calibration methodology is suboptimal and we
only have six parameters, Vix smiles generated by the model with parameters
(4) fall systematically within market bid-ask spreads. The overall shape of the
shorter-dated SPX smiles shown in figure 3 are reproduced accurately.

Obviously, fits can be made even better by reducing the range of strikes
of interest or by fine-tuning the calibration, notably through improving the
�0.�/ function. We are currently working on a fast calibration approach,
inspired by recent works on neural networks. �

5 Note that we can always take � D 1 up to a rescaling of the other parameters.
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