
Cutting edge: Derivatives pricing

In the balance redux
Understanding the interaction between a new derivative contract, its financing and the wider balance sheet during pricing is critical for

dealer profitability. For this purpose,Mats Kjaer develops a structural balance sheet model and demonstrates how it can be used to derive

consistent firm and shareholder breakeven prices. The latter price often involves a significant capital valuation adjustment, which can be

managed statically or hedged dynamically

I ncorporating the effects of derivatives funding into its pricing in the
form of funding and margin valuation adjustments has become stan-
dard practice over the last couple of years. One popular conceptual

foundation used to derive these adjustments is the semi-replication, devel-
oped by Burgard & Kjaer (2011a, 2013, 2017), which combines bilateral
counterparty risk and funding in a consistent way.

Increasing regulatory capital requirements since 2010 have led to a need
for capital valuation adjustments to ensure derivatives desks are meeting their
return on equity (ROE) targets. Green et al (2014) have perhaps the first
paper on this topic, in which they extend the semi-replication approach of
Burgard & Kjaer (2013) by adding a capital account accumulating at an
exogenous ROE. In essence, semi-replication is a credit-hybrid extension of
the Black-Scholes-Merton approach; as such, it ignores any balance sheet
feedback from derivative cashflows or their financing, including regulatory
equity capital. Green et al (2014) suggest that ‘fully understand[ing] the
interrelationship between counterparty default and capital requires a full bal-
ance sheet model’. Burgard & Kjaer (2011b), from whose article the title
of this one was derived, took feasibly the first step in this direction, but it
was Andersen et al (2019) who developed this approach much further with
their corporate finance-inspired single-period dealer balance sheet model.
Their approach is very transparent, allowing them to derive the firm and
shareholder breakeven prices of a new derivative contract, albeit without
incorporating regulatory capital, equity financing or hedging.

This article amalgamates the works of Kjaer (2017), which extends that of
Andersen et al (2019) by adding these missing features, and Kjaer (2018),
which extends it further to incorporate continuous time. All single-period
model intuition carries over to the continuous-time setting, which is much
more involved. Hence, we will initially focus on the single-period setup
before summarising the corresponding continuous-time results. Even in a
single-period setup the full balance sheet model is too large to have practical
pricing calculations performed on it. So, we reduce it by deriving marginal
firm and shareholder breakeven prices in the small trade limit. The result-
ing shareholder valuation adjustment formulas are financing method depen-
dent, are valid for arbitrary market and default models, and can be managed
statically or by dynamic hedging.

Dealer balance sheet and cashflow statement

To include the effects of regulatory capital and equity funding in pricing, we
follow the single-period balance sheet approach of Kjaer (2017). The nota-
tion is summarised in table A, where all T1 quantities are square integrable
random variables on the probability space .˝; F ; P / and theT1 legacy assets
and liabilities A and L have jointly continuous density functions.

At T0, a dealer firm is created by shareholders and creditors and endowed
with A0 assets and L0 liabilities. It then considers entering into a derivative
contract with contractual payoff Xc per unit with a counterparty firm. The

price U.q/ for q units is financed with a mix of debt, equity and/or off-
balance sheet cash. The regulator requires the amount of equity financing
UK.q/ to exceed some regulatory capital requirement K.q/.

We refer to the triplet .US .q/; UF .q/; UK.q// as a financing strategy for
U.q/ in reference to the funding strategies introduced by Burgard & Kjaer
(2013). Such a strategy must satisfy the financing constraint:

U.q/ D US .q/ C UF .q/ C UK.q/ (1)

Other sources and sinks for financing, such as initial and variation margin
collateral, could also be included, but we leave that as an exercise.

Fast forward to T1 and the dealer balance sheet is given by:

A.q/ D A C qXC.q/ � WK.q/

L.q/ D L C qX�.q/ C WF .q/

with notation in table B. Due to the possibility of counterparty default, the
actual derivative cashflow at T1 is given by:

X.q/ D Xc � 1B.q/.1 � ˇ.q//XC
c (2)

which contributes to the assets if X.q/ > 0, and to the liabilities other-
wise. The counterparty default event B.q/ and recovery ˇ.q/ can be taken
as exogenous or derived from the counterparty balance sheet in the same way
that:

D.q/ D fA.q/ 6 L.q/g and �.q/ D A.q/=L.q/

are derived from the dealer balance sheet.
The T1 assets change by WK.q/ as a consequence of increasing or decreas-

ing the T0 equity by UK.q/. Likewise, as a result of borrowing UF .q/ > 0

or repaying UF .q/ 6 0 at the rate rF .q/ agreed at T0, the T1 liabilities
change by WF .q/ D UF .q/.1 C rF .q//. From now on, we treat rF .q/ as
exogenous and WF .q/ as endogenous.

We have seen how the derivative and its financing create balance sheet
feedback and join the dealer and counterparty balance sheets via their default
events and recoveries. This allows a default of the counterparty to trigger
dealer default and vice versa under certain circumstances. Consequently, the
net cashflow CF.q/ at T1 between the dealer and the counterparty per unit
of derivative is:

CF.q/ D Xc � 1B.q/.1 � ˇ.q//XC
c C 1D.q/.1 � �.q//X�

c (3)

Figure 1 shows the resulting T0 and T1 cashflows between all the different
model agents from a dealer perspective.

The cost of debt and equity

In this section, we make SF .q/ and WK.q/ endogenous. To do so requires a
concept of fair valuation combined with the assumption that debt and equity
are priced at their respective fair values.
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Cutting edge: Derivatives pricing

A. A summary of the balance sheet notation used

Parameter Description

Exogenous

T0; T1 Period start and end times

A0; L0 T0 legacy assets and liabilities

A; L T1 legacy assets and liabilities

q Units of derivative q > 0

Xc T1 contractual derivative cashflow

U.q/ T0 derivative price given q

UF .q/ T0 debt financing of U.q/

US .q/ T0 off-balance sheet financing of U.q/

UK.q/ T0 equity financing of U.q/

WF .q/ T1 change in liabilities due to T0 debt financing

WK.q/ T1 change in assets due to T0 equity financing

Endogenous

D.q/; �.q/ T1 dealer default event and recovery given q

B.q/; ˇ.q/ T1 counterparty default event and recovery given q

X.q/ T1 actual derivative cashflow given q

A.q/; L.q/ T1 assets and liabilities given q

Here, Xc > 0 is a payment to the dealer, U.q/ > 0 represents a payment to the counterparty, and
Uf .q/ > 0 means the dealer is increasing the amount of financing for f D S; F; K. A negative
sign reverses the payment direction

� Fair valuation. A fair valuation rule is a linear and monotone mapping
of a random T1 cashflow amount X to a certain T0 amount FV.X/. It is
well known that all such mappings are given by a discounted risk-neutral
expectation:

FV.X/ D ıE�ŒX� (4)

where ı D FV.1/ is the fair value of a zero-coupon bond and E� is the
expectation with respect to a risk-neutral measure P � � P . The period
risk-free rate r is written as ı D 1=.1 C r/.
� The cost of debt. Let Dc.q/ indicate dealer survival at T1. If debt is
priced at its fair value, then the debt-financing spread SF .q/ D rF .q/ � r

can be determined via the relation:

ıE�Œ.1Dc.q/ C �.q/1D.q//.1 C r C SF .q//� D 1 (5)

From the next section onwards, we will focus on the small trade limit q ! 0.
In this case, we write �F D SF .0/, D D D.0/ and � D �.0/, and obtain:

�F D
E�Œ1D.1 � �/�

ı.1 � E�Œ1D.1 � �/�/

The corresponding debt discount factor is then defined as ıF D 1=.1C r C

�F /.
� The cost of equity. We start by defining the random variable Z via the
relationA�L D .A0�L0/.1CrCZ/.This represents the excess return over
the risk-free rate of the net portfolio of the legacy assets and liabilities. IfA,L
are priced at fair values, then E�ŒZ� D 0, as expected from a risk-neutral
measure.
From a shareholder perspective, however, the legacy balance sheet perfor-

mance is measured by the ROE. This is defined as:

ROE D
FV..A � L/C/

A0 � L0
� 1 (6)

To obtain a neat expression for ROE, we introduce a dealer survival mea-
sure P S of the type used by Schönbucher (2003) via the relation:

ıSES ŒX� D ıE�ŒX1Dc �

where ıS D ıP �.Dc/ is the fair value of a dealer survival-contingent
zero-coupon bond. The single-period hazard rate �S can now be defined
via the relation ıS D 1=.1 C r C �S / and then simplified to �S D

P �.D/=ıP �.Dc/. Letting �K D ES ŒZ� denote the excess expected return
of the portfolio of legacy assets and liabilities conditional on dealer survival
allows us to rewrite (6) as:

ROE D ıS .�K � �S /

The corresponding equity discount factor is written as ıK D 1=.1CrC�K/.
Finally, we letUK.q/ have the same distribution as the legacy balance sheet

such that WK.q/ D UK.q/.1 C r C Z/.
� Next steps. As it stands, the exogenous model parameters consist of the
contractual payoff Xc, the quantity q, the price U.q/ and the dealer and
counterparty legacy balance sheets A, L, along with their respective financ-
ing strategies. This is sufficient to calculate ROE and other balance sheet
metrics as a function of q for a price-taking dealer who takes U.q/ as given.
In the next sections, we will take an important step towards determining the
price by calculating the firm and shareholder breakeven prices that leave their
respective wealths unchanged.

The firm breakeven price

We fix all of the remaining exogenous model parameters listed in the previous
subsection (except q) and calculate the total fair value of the cashflows in
figure 1 going into and out of the firm at T0 and T1. By (3), the resulting
firm wealth F.q/ at T0 is given by:

F.q/ D ıE�Œq.Xc �1B.q/.1�ˇ.q//XC
c C1D.q/.1��.q//X�

c /��U.q/

To obtain something more tractable, we focus on trades that are small com-
pared with the size of the legacy balance sheet. More specifically, we let u D

dU=dq.0/ and calculate the marginal firm wealth function dF=dq.0/ D

f .u/ with:

f .u/ D ıE�ŒXc � 1B .1 � ˇ/XC
c C 1D.1 � �/X�

c � � u (7)

Defining the marginal risk-free fair value v�
r WD ıE�ŒXc� before solving

f .u/ D 0 allows us to state the following proposition.

Proposition 1 The marginal firm breakeven price Oufirm is given by:

Oufirm D v�
r � cva C dva

where:

cva D ıE�Œ1B .1 � ˇ/XC
c �

dva D ıE�Œ1D.1 � �/X�
c �

are the credit and debit valuation adjustments, respectively.

Proof See Kjaer (2017). �

The single-period credit and debit valuation adjustment formulas in
proposition 1 may seem simple, but they incorporate the full right- and
wrong-way risk ultimately implied by the jointP �-distribution ofXc as well
as the dealer and counterparty legacy assets and liabilities. In the small trade
limit, the firm breakeven price only depends on the legacy balance sheets
via B , ˇ, D and �, so we have taken the first step towards a reduced-form
model. To complete this process, we have to make the joint distributions of
these parameters and Xc exogenous to our model. In many practical imple-
mentations, the recoveries, default events and trade cashflow are taken to be
independent of each other.
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Cutting edge: Derivatives pricing

1 Cashflows between the dealer (‘D’) and its shareholders (‘Sh’), creditors (‘Cr’) and counterparty (‘C’) at T0 (blue), T1 dealer survival (green) and T1

dealer default (red)
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The firm is highlighted by a black frame. Cashflows that can go in either direction are represented by bidirectional arrows

The shareholder breakeven price

By following similar steps as in the previous section, we can calculate the
marginal shareholder wealth g.uF ; uS ; uK/ at T0, where:

uF D
dUF

dq
.0/; uS D

dUS

dq
.0/; uK D

dUK

dq
.0/

satisfy the marginal financing constraint uS C uF C uK D u. Kjaer (2017)
extends the proofs of Andersen et al (2019) to show that:

g.uF ; uS ; uK/ D ıSES ŒX � uF =ıF � uS =ıS � uK=ıK � (8)

To simplify our later analysis, we now express the financing strategy in terms
of financing weights uF D ˛F u, uS D ˛S u and uK D ˛Ku and rewrite
the wealth as:

g˛.u/ D ıSES ŒX � u=ı˛ � (9)

where ı˛ D 1=.1 C r C �˛/ is a weighted average cost of capital (WACC)
discount factor computed from theWACC spread: �˛ D ˛S �S C˛F �F C

˛K�K .
The shareholders should only accept the new derivative if g˛.u/ > 0,

which yields the following proposition.

Proposition 2 The marginal shareholder breakeven price Oush is given by:

Oush D ı˛ES ŒX�

D vS
r � fva˛ � fcva˛

where:

vS
r D ıES ŒXc�

fva˛ D ı˛�˛vS
r

fcva˛ D ı˛ES Œ1B .1 � ˇ/XC
c �

are the shareholder risk-free price, the financing valuation adjustment and the
financing discounted credit valuation adjustment, respectively.

Proof See Kjaer (2017). �

Proposition 2 is interesting in two ways. First, it uses a shareholder risk-
free price vS

r , which is distinct from v�
r . We will discuss this further in the

next section. Second, Oush contains a total financing valuation adjustment
determined by the dealer WACC.

For more details on the deeper connections between firm and shareholder
breakeven prices, see Kjaer (2017).

A financing strategy with capital valuation adjustment

In this section, we will consider a specific financing strategy that involves
the marginal regulatory capital requirement k D dK.q/=dq.0/ and the
resulting capital valuation adjustment explicitly. More specifically, we set:

uF D ıF ES ŒX� � k

uf D �ıf .�K � �F /k

uK D k

(10)

where, again, f 2 fF; K; Sg. We now obtain the following proposition.

Proposition 3 The marginal shareholder breakeven price Oush for the fi-
nancing strategy (10) is given by:

Oush D vS
r � fva � fcva � kva

where:

fva D ıF �F vS
r

fcva D ıF ES Œ1B .1 � ˇ/XC
c �

kva D ıf .�K � �F /k

are the funding, funding discounted credit and capital valuation adjustments,
respectively.
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Cutting edge: Derivatives pricing

Proof See Kjaer (2017). �

These formulas are single-period versions of the continuous-time valua-
tion adjustments derived in Burgard & Kjaer (2013) and Green et al (2014).
While simple, they incorporate right- and wrong-way risk by using the joint
distribution of the counterparty default and the derivative payoff, conditional
on dealer survival. We now look into these adjustments in more detail.
� The shareholder risk-free price. This price differs from the risk-free
fair valuation v�

r in that it is computed under the dealer survival measure
P S rather than P �. Kjaer (2018) provides an example in which the two
measures are different due to a jump in a spot asset price at dealer default.
� The funding valuation adjustment. This is a specialisation of the gen-
eral financing valuation adjustment from the previous section. It is evaluated
under the survival measure and can be positive or negative depending on
whether the deal increases or reduces dealer financing requirements.
� Thefinancing discounted credit valuation adjustment. The financing
discounted credit valuation adjustment is always non-negative and is similar
to the firm credit valuation adjustment; however, it is evaluated under P S

rather than P � and is discounted with ıF rather than ı.
� The capital valuation adjustment. The capital valuation adjustment,
kva, is always non-negative. Its accrual rate �K � �F consists of two compo-
nents. The rate �K is the excess return of the balance sheet assets liquidated
at T0 to free the regulatory capital and thus represents an opportunity cost.
The rate �F is due to the reduction in debt financing by using equity instead.
The choice of financing method f for the kva itself is tied to how it is man-
aged. More specifically, f D S means the kva is released immediately at T0.
Choosing f D F means it is held on the balance sheet and used in lieu of
debt. Finally, f D K corresponds to reserving it in retained earnings and let-
ting it count towards the regulatory capital requirement. As a consequence,
fewer legacy assets need to be liquidated and the return on these assets is
awarded to kva; this is how it comes to grow at the rate 1=ıK . Such a case
was previously derived by Albanese et al (2016).

In the special case when f D F , we can incorporate the financing relief
due to equity financing into the funding valuation adjustment such that:

Oush D vS
r � ıF �F .vS

r � k/ � ıF ES Œ1B .1 � ˇ/XC
c � � ıF �Kk

Static and dynamic xva management

The financing strategies presented so far constitute static management in that
the amount Oush=ı˛ D ES ŒX� released at T1 is determined at T0. At the
same time, the actual trade cashflow X is also released, resulting in a volatile
net release of X � ES ŒX�.

To remove this volatility, we employ dynamic management by hedging the
payoff X at the marginal cost uh. This cost has the opposite sign to u and is
financed with debt, since the debt account is part of the replication strategy.
If the derivative is also financed with debt, then it is straightforward to show
Oush D uh. For the general case, it is shown in Kjaer (2017) that:

Oush D ı˛uh=ıF (11)

We can take uh as an exogenous cost of a cleared back-to-back trade also
with payoff X , which could then include any clearing house initial margin.
Alternatively, we can replicate the payoff with simpler traded instruments.
By Kjaer (2017) this yields uh D ıF EQŒX�, where Q � P S is a survival
measure implied by the replication strategy. Inserting this uh into (11) yields:

Oush D ı˛EQŒX� (12)

B. The single-period and continuous-time notation

Single period Continuous time

.˝; F ; P / .˝; F ; Ft ; P / for 0 6 t 6 T

r r.t/

ı Dr .t; T / D exp.�
R T

t r.u/ du/

Xc xc.t/ (cashflow stream)

v�
r D ıE�ŒXc� V �

r .t/ D E�Œ
R T

t Dr .t; u/xc.u/ du j Ft �

D; B f�D 6 tg, f�C 6 tg

ıSES ŒXc� D ıE�ŒXc1Dc � ES
t ŒDS .0; t/xc.t/�

D E�ŒDr .0; t/xc.t/1f�D>tg�

�f , f D S; F; K �f .t/, f D S; F; K

ıf D 1=.1 C r C �f / Df .t; T / D exp.�
R T

t .r.u/ C �f .t// du/

ROE D ıS .�K � �S / roe.t/ D �K.t/ � �S .t/

k K.t/

so the shareholder breakeven price formula for a hedged derivative is still
given by propositions 2 and 3, with P S D Q.

Continuous time

Here, we state the continuous-time versions of propositions 1 and 3 from
Kjaer (2018).
� Notation. We start by listing our notation in table B. The valuation
adjustments are denoted by uppercase acronyms to distinguish them from
their single-period counterparts. All calculations take place at t D 0 unless
stated otherwise.
� Firm breakeven price. At dealer and counterparty default times, �D
and �C, there are final closeout cashflows of GD.�D/ and GC.�C/, which
depend on their recoveries �.�D/ and ˇ.�C/. With this assumption in place,
the continuous-time extension of proposition 1 reads as follows.

Proposition 4 The firm breakeven price OUfirm can be written as:

OUfirm D V �
r � CVA C DVA

with:

CVA D E�ŒDr .0; �C/.V �
r .�C/ � GC.�C//1f�C<�D;�C6T g�

DVA D E�ŒDr .0; �D/.V �
r .�D/ � GD.�D//1f�D<�C;�D6T g�

Proof See Kjaer (2018). �

� Shareholder breakeven price. The continuous-time shareholder break-
even price is expressed in terms of expectationsEf

t with respect to a financing
measure dP

f
t D Zf .t/ dP S

t for f D S; F; K with the Radon-Nikodyn
derivative:

Zf .t/ D
DS .0; t/

Df .0; t/

�
ES

t

�
DS .0; t/

Df .0; t/

�
To state the continuous-time equivalent of proposition 3, we need the share-
holder risk-free price:

V F
r .t/ WD

Z T

t
EF

u ŒDr .t; u/xc.u/ j Ft � du

With some effort, we can now prove the following proposition.

Proposition 5 The shareholder breakeven price OUsh is given by:

OUsh D V F
r � FVA � FCVA � KVA
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Cutting edge: Derivatives pricing

with:

FVA D

Z T

0
EF

t Œ�F .t/DF .0; t/V F
r .t/1f�C>tg� dt

FCVA D EF
�C ŒDF .0; �C/.V F

r .�C/ � GC.�C//1f�C6T g�

KVA D

Z T

0
Ef

t Œ.�K.t/ � �F .t//Df .0; t/K.t/1f�C>tg� dt

Proof See Kjaer (2018). �

These valuation adjustments are model independent and incorporate
right- and wrong-way risk. Setting f D S and identifying �S .t/ with a
deterministic dealer hazard rate replicates the KVA formula of Green et al
(2014), albeit derived from rather different assumptions. These authors use
a deterministic hazard rate model with independent defaults, which implies
that all dealer financing measures are equal to the risk-neutral measure due
to no-way risk.
� Static and dynamic XVAmanagement. The continuous-time financing
strategies used by Kjaer (2018) essentially release the XVA over time by pay-
ing a cashflow stream equal to the XVA formula integrands in proposition 5,
grown at their cost of financing (unless f D S , in which case the entire
KVA is paid at t D 0). Since these integrands are expectations computed at
t D 0, this is a static management method. In particular, if stochastic moves
in market factors increase or decrease K.t/ by more than its expected value
at t D 0, then the realised ROE will be below or above the target.

The continuous-time equivalent of the single-period hedging objective dis-
cussed in the previous section entails setting up a self-financing strategy that
generates the cashflow stream xc.t/ C .�K.t/ � �F .t//K.t/ while both
parties are alive, and GC.�C/ at counterparty default. The semi-replication
itself is debt financed and assumes all randomness of K.t/ comes frommove-
ments in tradable instruments. This approach thus guarantees the instantan-
eous realised ROE always equals the target. As in the single-period model,
the breakeven price when hedging is given by using the measure induced by
the replication in the formulas of proposition 5 while leaving the discounting
intact. If pure debt financing is used, then this price equals the cost of setting
up the hedge. This justifies the approach taken by Burgard & Kjaer (2013),
who identify the ‘shareholder economic value’ with the cost of setting up a
replicating portfolio. Kjaer (2018) extends the semi-replication methodology
to a model for which a spot asset price jumps at both dealer and counterparty
default. The resulting hedging cost excludes the jump at dealer default, as
expected from a dealer survival measure.
� Dealer level KVA. So far, the regulatory capital requirement K.t/ has
been computed at the counterparty level, and the aggregation across coun-
terparties is assumed to have been computed by a simple summation. The
Basel III BA-CVA capital requirements defined in Basel Committee on Bank-
ing Supervision (2017) have dealer-level capital KD.t/ being calculated as
a non-linear aggregation over the counterparty level capital requirements
KC.t/ for NC counterparties. At a future time t , this aggregate requirement
will include only those counterparties that have not yet defaulted. It follows
that KD.t/ D KD.t; �.t//, where �.t/ is a binary vector of NC elements
�C.t/ D 1f�C>tg. The dealer-level KVAD then becomes:

KVAD D �

Z T

0
Ef

t Œ.�K.t/ � �F .t//Df .0; t/KD.t; �.t//� dt (13)

The formula (13) has many structural similarities to the dealer-level fund-
ing valuation adjustment studied by Burgard & Kjaer (2017), including the

C. Counterparty (CP) parameters used

CP rating �C Recovery SA-CCR RW BA-CVA RW

AA 100bp 40% 20% 3%

BB 250bp 40% 100% 7%

D. Shareholder valuation adjustments for the ITM test swap

AA CP BB CP
XVA Unmargined Margined Unmargined Margined

FCVA �1.91 �0.12 �4.51 �0.27

FVA �1.36 0.00 �1.29 0.00

SA-CCR KVA (f DF ) �1.08 �0.13 �5.12 �0.60

SA-CCR KVA (f DS ) �1.07 �0.13 �5.04 �0.60

SA-CCR KVA (f DK) �0.77 �0.09 �3.66 �0.45

BA-CVA KVA (f DF ) �3.83 �0.47 �8.55 �1.06

BA-CVA KVA (f DS ) �3.78 �0.47 �8.46 �1.05

BA-CVA KVA (f DK) �2.93 �0.37 �6.58 �0.83

The results are given in bp of notional per year

E. Shareholder valuation adjustments for the ATM test swap

AA CP BB CP
XVA Unmargined Margined Unmargined Margined

FCVA �1.11 �0.12 �2.60 �0.29

FVA �0.06 0.00 �0.06 0.00

SA-CCR KVA (f DF ) �0.74 �0.13 �3.46 �0.60

SA-CCR KVA (f DS ) �0.72 �0.13 �3.41 �0.60

SA-CCR KVA (f DK) �0.51 �0.09 �2.42 �0.45

BA-CVA KVA (f DF ) �2.51 �0.47 �5.60 �1.06

BA-CVA KVA (f DS ) �2.48 �0.47 �5.53 �1.05

BA-CVA KVA (f DK) �1.88 �0.37 �4.22 �0.83

The results are given in bp of notional per year

exponential computational complexity in NC. Thus, some kind of approxi-
mation would be needed to calculate (13) in practice.

Results

Tables D–F show how shareholder XVA in general and SA-CCR and BA-
CVA KVA in particular can affect pricing significantly. Each table in turn
prices out-of-the-money (OTM), at-the-money (ATM) and in-the-money
(ITM) 10-year US$100 million notional vanilla test swaps, with the dealer
paying fixed semi-annually and receiving US$ three-month Libor quarterly.
The ATM fixed rate is 2.3395%, with the ITM and OTM strikes set at 40
basis points either side. For completeness, we calculate KVA for all three
financing methods f D F; S; K.

For pricing, we use a standard reduced-form model, where interest rates
follow a one-factor Hull-White model with a deterministic additive basis
between the Libor and overnight index swap (OIS) short rates as well as
independent dealer and counterparty default times driven by constant hazard
rates �D and �C. The dealer hazard rate is �D D 100bp, its funding spread
is �F D 60bp and its ROE target is 10% per annum.Two counterparties are
considered, with the parameters given in table C. Finally, we consider both
the unmargined and the margined cases. For the latter, we use zero thresh-
olds, minimum transfer amounts and independent amounts combined with
a 10-business-day margin period of risk.

The resulting SA-CCR exposures at default are used in the Basel III
BA-CVA capital formula defined by Basel Committee on Banking Super-
vision (2017). To emulate the diversification benefit of having a book
with a large number of similar counterparties, we use the approximation
K.t/ D � SCVA.t/, where � D 0:5 and SCVA.t/ is the counterparty level
BA-CVA capital requirement.
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F. Shareholder valuation adjustments for the OTM test swap

AA CP BB CP
XVA Unmargined Margined Unmargined Margined

FCVA �0.62 �0.13 �1.43 �0.31

FVA 1.23 0.00 1.18 0.00

SA-CCR KVA (f DF ) �0.48 �0.13 �0.48 �0.13

SA-CCR KVA (f DS ) �0.47 �0.13 �0.47 �0.13

SA-CCR KVA (f DK) �0.33 �0.09 �0.33 �0.09

BA-CVA KVA (f DF ) �1.59 �0.47 �3.54 �1.06

BA-CVA KVA (f DS ) �1.57 �0.47 �3.49 �1.05

BA-CVA KVA (f DK) �1.17 �0.37 �2.61 �0.83

The results are given in bp of notional per year

As feared, the cost of financing the regulatory capital becomes very high
if either the counterparty is risky or the trade is unmargined. The worst case
is the ITM swap in table D, where the total XVA adjustment is 19.47bp of
notional annually (13.67bp of which is KVA) when trading uncollateralised
with the BB counterparty while using the KVA in lieu of debt financing
(f D F ). This cost can be reduced in two ways. First, if the two parties
can sign a perfect two-way credit support annex for variation margin, then
the total XVA in the worst-case example is reduced by a factor of 10 to around
2bp of notional annually. Second, using the KVA itself in lieu of regular
capital allows the dealer to set f D K, which reduces KVA f by roughly
one-third in the examples above.
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Finally, we note SA-CCR KVA is 30–60% of the BA-CVA KVA, which
is consistent with the financial crisis folklore that two-thirds of counterparty
credit risk losses were due to CVA risk rather than outright defaults.

Conclusion

We have developed a dealer balance sheet model and used it to derive consis-
tent and model-independent marginal firm and shareholder breakeven prices
and valuation adjustments for a new derivative contract. The former is what
an external party should pay to acquire the derivative and its financing. The
latter ensures shareholders are not worse off when they account for the cost of
financing the derivative, including regulatory capital. The resulting XVAs are
valid regardless of whether the XVA terms are managed statically or dynam-
ically. Importantly, the KVA can be discounted at a comparably high ROE,
provided it is reserved on the balance sheet. Even so, our examples show it can
be of considerable magnitude compared with other shareholder XVA terms.
As a major driver of the derivative profitability, we agree with Green et al
(2014) that KVA should be calculated and managed using one of the static
or dynamic methods presented in this article. �
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