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ABSTRACT

Global regulation obliges financial institutions to manage model risk with the same
severity as any other risk. Its quantification is therefore essential to meet these
requirements and to ensure an institution’s basic internal operations are able to run
smoothly. In this paper, we address the quantification of model risk by calculating the
norm of an appropriate function defined on a Riemannian manifold endowed with a
Fisher–Rao metric. Our aim is twofold: to introduce a mathematical framework that
is sufficiently general and sound to cover the main areas of model risk, and to illus-
trate how a practitioner can identify the relevant abstract concepts and put them to
work.

Keywords: model risk; uncertainty; Fisher–Rao information metric; model manifold; exponential
map.

Corresponding author: C. Vázquez Print ISSN 1460-1559 jOnline ISSN 1755-2850
c
 2019 Infopro Digital Risk (IP) Limited

1



2 Z. Krajčovičová et al

1 INTRODUCTION

Models are simplified mappings of reality that serve a specific purpose: applying
mathematical, financial and economic theories to available data. They deliberately
focus on specific aspects of reality and downgrade or ignore the rest. Understanding
the capabilities and limitations of underlying assumptions is key when dealing with
a model and its outputs. According to the US Federal Reserve (2011), model risk is
defined as

the potential for adverse consequences from decisions based on incorrect or misused
model outputs and reports. Model risk can lead to financial loss, poor business and
strategic decision making, or damage to a bank’s reputation.

Thus, the US Federal Reserve (2011) identifies two main reasons for model risk:
inappropriate usage and fundamental errors. Further, it states that model risk should
be managed and addressed with the same severity as any other type of risk, and
that banks should identify the sources of model risk and assess their magnitude. The
US Federal Reserve also emphasizes that expert modeling, robust model validation
and a properly justified approach are necessary elements in model risk moderation,
although they are not sufficient in and of themselves and should not be used as an
excuse to avoid improving models.

Despite the rise in awareness of model risk and an increased understanding of
its significant impact, there are no globally recognised industry or market stan-
dards regarding its exact definition, management and quantification, even though,
as mentioned above, proper model risk management is required by regulators.

Within the finance literature, some authors have defined model risk as

� uncertainty about risk factor distribution (Gibson 2000),

� misspecification of an underlying model (Cont 2006),

� deviation of a model from a “true” dynamic process (Branger and Schlag
2004),

� discrepancies relative to a benchmark model (Hull and Suo 2002), and

� inaccuracy in risk forecasting due to estimation error and using an incorrect
model (Boucher et al 2014).

Model risk has previously been classified in all asset classes; see Morini (2011) for
interest rate products and credit products, Cont (2006) for option-pricing models,
Christodoulakis and Satchell (2008) for portfolio applications, Saltelli et al (2013)
for asset-backed securities and Boucher et al (2014) for model risk’s relation to
measuring market risk.
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Quantification, an essential part of model risk management, is required for the
consistent management of model weaknesses and limitations as well as their effec-
tive communication to decision makers and users. It is also necessary for assessing
model risk in the context of an organization’s overall position. The quantification of
model risk should consider the uncertainty stemming from mathematical technique
selection (eg, by focusing on fitting a normal distribution and, hence, leaving aside
other distribution families), the calibration methodology (eg, different optimization
algorithms may derive different parameter values) and limitations of the data sample
(eg, a sparse or incomplete database).

Model risk quantification poses many challenges due to the high diversity of mod-
els, the wide range of techniques and the different implementations of models, among
others. Some model outputs drive decisions, while other model outputs provide one
source of management information. Some outputs are further used as inputs in other
models. In addition, model outputs may be completely overridden by expert judg-
ment. Finally, in order to quantify model risk, you need another model, which will
also be prone to model risk.

It is common practice to consider the most relevant areas of analysis for the quan-
tification of model risk to be data and calibration, model foundations, model perfor-
mance, IT infrastructure, model use, controls and governance, and model sensitivity.
The model may be fundamentally defective because of errors in its theoretical foun-
dation or conceptual design that have emerged from incorrect assumptions, model
misspecification or the omission of variables. Data quality issues, inadequate sample
sizes and outdated data contribute to model performance issues such as instability,
inaccuracy or bias in model forecasts. Model risk also arises from inadequate con-
trols over model use. Flawed test procedures or failure to perform consistent and
comprehensive user-acceptance tests, to name just two errors, can lead to material
model risk.

The focus of this paper is on developing a new approach for quantifying model risk
within the framework of differential geometry (see Murray and Rice 1993) and infor-
mation theory (see Amari et al 1987). In this work, we introduce a measure of model
risk on a statistical manifold, where models are represented by a probability distribu-
tion function. The differences between models are determined by the geodesic dis-
tance under the Fisher–Rao metric. This metric allows us to use the intrinsic structure
of the manifold of densities and to respect the geometry of the space we are working
on, ie, it accounts for the nonlinearities of the underlying space.

The rest of this paper is structured as follows. In Section 2, we summarize the
central concepts from Riemannian geometry and introduce the terminology used
throughout the paper. Our modeling process and a general description of our pro-
posed method for the quantification of model risk are presented in Section 3, which
is followed by a detailed discussion of the main quantification steps. Sections 4 and 5
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describe the construction of a neighborhood containing material variations of the
model and provide a definition of the weight function, respectively. The model risk
measure is then defined and explained in Section 6. Section 7 is dedicated to an
empirical example of the model risk calculation of a credit risk model. Section 8 pro-
vides some final conclusions and directions for future work, and, finally, the online
appendix contains the construction of the weight function and the proofs of our main
results.

2 BACKGROUND ON RIEMANNIAN GEOMETRY

In this section, we introduce some essential concepts from differential geometry and
information theory, and fix the notation and terminology used throughout this paper.
For more details, we refer the reader to, for example, Amari et al (1987) or Murray
and Rice (1993).

Let M be a statistical manifold consisting of the probability density functions
p.xj�/ of a random variable x 2 X with respect to a measure � on X, such that
every distribution is uniquely parameterized by an n-dimensional vector � D .� i / D
.�1; : : : ; �n/.1 Specifically, let

M D fp.xj�/ j � 2 � � Rng;

with a one-to-one mapping between � and p.xj�/. In addition, under the assump-
tions that the parameterization of M is differentiable and C1 is a diffeomorphism,
the parameterization � forms a coordinate system of M (Amari et al 1987). The local
coordinate system � D .�1; : : : ; �n/ then induces a basis

@

@�
D .@1; : : : ; @n/

of the tangent spaces (@i is shorthand for @=@� i ).
The structure of M is specified by a Riemannian metric, g D .gij /, which is

defined by a local product on tangent vectors at each point p 2 M, denoted by
g W TpM � TpM ! R; that is, symmetric, bilinear, positive definite and C1 differ-
entiable in p. By the bilinearity of the inner product of g, for any two tangent vectors
u; v 2 TpM,

g.u; v/ D

nX
iD1

nX
jD1

viujg.@i ; @j /;

1 We describe only the case for a continuum on the set X; however, if X were discrete, the given
framework would still apply if we switched

R
.�/ with

P
.�/.
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where f@igniD1 form the basis elements of TpM. For a statistical manifold, the Fisher–
Rao information metric is given by

Iij .p/ D gij .p/ D E
�
@ log.p/
@� i

@ log.p/
@�j

�
D

Z
p
@ log.p/
@� i

@ log.p/
@�j

d�; (2.1)

where I.p/ D I.p.xj�// can be considered as a Riemannian metric. Note that
det.I.p.xj�/// represents the amount of information a sample point conveys with
respect to the problem of estimating the parameter � , and so I.�/ can be used to
determine the dissimilarities between distributions. This measures the ability of the
random variable x to discriminate the values of the parameter � 0 from � for � 0 close
to � .

EXAMPLE 2.1 (Statistical manifold of normal distributions) The normal distribu-
tion with mean � and variance �2 is given by

N .x j �; �2/ D
1

p
2��2

exp
�
�
1

2�2
.x � �/2

�
; x 2 R; � 2 R; � > 0:

Set � D f.�1; �2/ 2 R2 j �2 > 0g, X D R and p.xj�/ D N .x j
p
2�1; .�2/2/.

Then, the statistical manifold with respect to fp.�j�/ j � 2 �g has a Riemannian
metric g D 2.�2/�2

P
d� i d� i of constant curvature �1=2.

The Riemannian metric encodes how to measure distances, angles, areas and cur-
vature on the manifold by specifying the scalar product between tangent vectors at
a particular point. If we consider a curve 
 W Œa; b� � R ! M on the manifold, its
length `.
/ can be defined as

`.
/ D

Z b

a





d

dt





 dt D
Z b

a

q
gij P
 i P
j dt D

p
h P
; P
i;

where P
 i is the derivative of P
 i D @
=@� i . Then, the distance between two points
p; q 2M is defined by the infimum of the length of all smooth curves between these
two points. This is given by

d.p; q/ D

Z

2�

`.
/;

where � is a set of all of the smooth curves between these two points. The local
length-minimizing smooth curve 
.t/ W Œ0; 1� ! M is called geodesic and is char-
acterized by the fact that it is autoparallel, eg, the field of tangent vectors P
.t/ stays
parallel along 
 (velocity is constant along the geodesic r P
 P
 D 0 on 
 ). In local
coordinates, a curve is geodesic if and only if it is the solution of the system of n
second-order Euler–Lagrange equations:

d2�k

dt2
C

nX
i;jD1

� kij
@� i

dt
@�j

dt
D 0
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for all k D 1; : : : ; n, where � kij are Christoffel symbols of the second kind.
From the results of existence and uniqueness of solutions of differential equa-

tions, for each p 2 M and tangent vector v 2 TpM there exists an open interval
Iv with 0 2 Iv and a unique geodesic 
v W Iv ! M such that 
v.0/ D p and
P
v.0/ D v. Therefore, the exponential mapping expp W TpM ! M is defined by
expp.v/ D 
v.1/ D 
v1

.kvk/, with v1 D v=kvk. For each p 2 M, there exists
a neighborhood V of the origin in TpM such that expp is a diffeomorphism from
V onto a neighborhood V of p. The neighborhood V is star-shaped, ie, for any
point belonging to V, the line joining the point to the origin is contained in V. The
image of a star-shaped neighborhood of the origin under the exponential map is a
neighborhood of p on the manifold (also called a normal neighborhood).

A notion of connection r defines a map between any neighboring tangent spaces.
The canonical affine connection on a Riemannian manifold is the Levi–Civita con-
nection, and this is defined directly from the covariant derivative, ie, it is an orthog-
onal projection of the usual derivative of the vector fields onto tangent space. It par-
allel transports a tangent vector along a curve while preserving its inner product (it
is compatible with the metric, ie, the covariant derivative of the metric is zero). The
Levi–Civita coefficients are defined in each local chart by the Christoffel symbols of
the second kind � kij , given by

r
k
ij D �

k
ij D

1
2
gkl

�
@gjl

@� i
C
@gil

@�j
�
@gij

@� l

�
for all i; j; k; l D 1; : : : ; n; the Einstein summation convention is used, and gkl is the
metric inverse. When the connection coefficients of r with respect to a coordinate
system of M are all identically 0, then r is said to be flat, or, alternatively, M is flat
with respect to r.

3 MODELING PROCESS STEPS AND QUANTIFICATION OF MODEL
RISK

There are different types and aspects of model risk that tend to easily overlap,
co-occur or co-vary. In this context, we propose four rough model creation steps:
(1) data, (2) calibration, (3) model selection and testing, and (4) implementation and
usage. These steps may occur in an iterative fashion, although they result in a gen-
eral linear flow that ends with institutional use (implementation and maintenance)
to direct decision making (often encoded into an IT system). Limitations in any of
these areas can impair the reliability of the model results.

Data refers to the definition of the reason for modeling, the specification of the
modeling scope, human and financial resources, and the specification of data and
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other prior knowledge as well as its interpretation and preparation. Data may be
obtained from both internal and external sources, and it is further prepared by
cleaning and reshaping. Model risk may arise from data deficiencies in terms of
both quality and availability, including errors in data definition, insufficient sample
sizes, inaccurate proxies, sensitivity to expert judgment or misinterpretation.

Calibration includes selecting the types of variables and the nature of their treat-
ment, tuning free parameters and the links between system components and
processes. Estimation uncertainty may occur due to simplifications, approxima-
tions, flawed assumptions, inappropriate calibration, errors in statistical estima-
tion or market benchmarks, computational or algorithmic limitations, or the use of
unobservable parameters.

Model selection and testing involves choosing the estimation performance criteria
and techniques, and identifying the model structure and parameters, which is gen-
erally an iterative process with the underlying aim of balancing sensitivity to sys-
tem variables with complexity of representation. Further, it is related to conditional
verification, which includes checking sensitivity to changes in the data and to pos-
sible deviations from the initial assumptions. In this step, model risk stems from,
for example, inadequate and incorrect modeling assumptions, outdated models due
to parameter decalibration, model instability or model misspecification.

Implementation and usage refers to deploying the model into production, which is
followed by regular maintenance and monitoring. Sources of model risk in this
step include using the model for unintended purposes, a lack of recalibration,
IT failures, a lack of communication between modelers and users, and a lack of
understanding with regard to model limitations.

The quantification of model risk, from a best-practice perspective, should be quick
and reliable, without the need to refit or rebuild models or reference particular struc-
tures and methodologies, and with prioritizing analysis (getting immediate assurance
on shifts that are immaterial).

In this paper, we aim to show that differential geometry and information theory
can offer the base for such an approach. For this purpose, in our setting, a model is
represented by a particular probability distribution, p W X ! RC, that belongs to a
manifold of probability measures M, the so-called statistical manifold, available for
modeling. The manifold M can be further equipped with the information-theoretic
geometric structure that allows us to quantify variations and dissimilarities between
probability distribution functions (models), among other things.

The set of probability measures may be further parameterized in a canonical way
by a parameter space �, M D fp.xI �/ j � 2 �g. This set forms a smooth Rie-
mannian manifold M. Every distribution is a point in this space, and the collection
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of points created by varying the parameters of the model, p 2 M, gives rise to a
hypersurface (a parametric family of distributions) in which similar distributions are
mapped to nearby points. The natural Riemannian metric is shown to be the Fisher–
Rao metric (see Rao 1945), which is a unique intrinsic metric on the statistical mani-
fold. It is the only metric that is invariant under reparameterization (see, for example,
Amari et al 1987).

Let us consider a given model p0, which can be uniquely parameterized using the
vector �0 D .�10 ; : : : ; �

n
0 / over the sample space X, and which can be described by

the probability distribution p0 D p.xI �0/. This probability distribution belongs to
a set (family) of distributions M D fp.xI �/ j � 2 � � Rng that forms a model
manifold. We assume that for each x 2 X the function � 7! p.xI �/ is C1. Thus,
M forms a differentiable manifold, and we can identify models in the family with
points on this manifold. Thus, choosing a particular model is equivalent to fixing a
parameter vector � 2 �.

We define the model risk for a given model p0 on the scale of an open neigh-
borhood around p0, which contains alternative models that are not too far, in a
sense that is quantified by the relevance of missing properties and limitations of
the model. The model risk is then measured with respect to all of the models inside
this neighborhood as the norm of an appropriate function of the output differences
over a weighted Riemannian manifold endowed with the Fisher–Rao metric and the
Levi–Civita connection.2 This analysis consists of five steps:

(1) embedding the model manifold into one that considers missing properties in
the given model p0;3

(2) choosing a proper neighborhood around the given model;

(3) choosing an appropriate weight function that assigns relative relevance to the
different models inside the neighborhood;

(4) calculating the measure of model risk with respect to all models inside the
neighborhood through the corresponding norm; and

(5) interpreting the measure with respect to the specific use of the model risk
quantification.

2 The Levi–Civita connection transports tangent vectors defined at one point to another and is
compatible with the geometry induced by the Riemannian metric (Amari et al 1987). In addition,
for this choice of connection, the shortest paths are geodesics.
3 Or properties not appropriately modeled, for which there is no consensus, or which cannot be
adequately calibrated, etc.
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A new approach to the quantification of model risk for practitioners 9

Each step addresses and aligns different limitations of the model and the uncertainty
in various areas related to the model.4 In the following sections, we further develop
these steps and describe the intuition behind them.

4 NEIGHBORHOOD AROUND THE MODEL

Recall that the given model p0 belongs to a n-dimensional manifold M, where each
dimension represents different aspects of information inherited by p0. In order to
incorporate any missing properties, uncertainty surrounding the data and calibra-
tion, additional information about the limitations of the model or wrong underlying
assumptions, we may need to add new dimensions to M, and thus to consider a
higher-dimensional space into which M can be embedded.5

We define a neighborhood around p0 with the help of the tangent space Tp0
M.6

Note that Tp0
M is a vector space that describes a first-order approximation, infinites-

imal displacements or deformations on the manifold at point p0. From a practical
point of view, not all perturbations are relevant; thus, taking into account the mate-
riality with respect to the intended purpose of the model, its usage, business and
market, we consider only a small subset of the tangent bundle.

Let U be the open set around p0 of a normal neighborhood V such that

U D ftv 2 V � Tp0
M j 0 < t 6 ˛.v/; v 2 S.p0; 1/

and normal coordinates are definedg;

where S.p0; 1/ D fv 2 Tp0
M; kvk D 1g is the unit sphere on Tp0

M.
The set U includes the directions of all relevant perturbations of the model p0 up

to a certain level ˛.v/ in direction v. The level ˛.v/ depends on the tangent vectors,
since the degree of our uncertainty on p0 might not be constant across the canonical
parameter space; for instance, we could assume more uncertainty in the tails of the
distribution p0 than in its body, or higher sensitivity to one of the parameters than to
the others. The level ˛.v/ can be interpreted as a means of controlling the uncertainty
surrounding our choice of model p0 as well as the data and calibration, and it is
appropriately chosen based on the usage of the model.

4 For example, data, calibration, model selection, model performance, model sensitivity and
scenario analysis, and – most importantly – model usage.
5 Consider, for example, a case where the underlying model space represents the family of normal
distributions, ie, a two-dimensional manifold M0; we may want to consider the family of skew
normal distributions, ie, a three-dimensional manifold M for which M0 � M, in order to also
examine skewness.
6 Note that throughout the paper we do not refer to the neighborhood as a strictly topological
neighborhood.
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Since U is a subset of the normal neighborhood around p0, the exponential map
is well defined and we can construct a corresponding set of models close to p0:

U D expp0
.U/ D fp 2M j d.p0; p/ 6 ˛.v/g: (4.1)

From now on, we shall require the boundary @U D fexpp0
.˛.v/v/ j v 2 S.p0; 1/g

to be continuous and piecewise regular. Moreover, U shall be a compact star-shaped
set with respect to p0, which is defined as follows.

DEFINITION 4.1 A compact subset U of a Riemannian manifold M is called star-
shaped with respect to p0 2 U if, for all p 2 U , p ¤ p0, there exists a geodesic
segment 
 , with 
.0/ D p0 connecting p0 and p such that 
.t/ 2 U for all t 2
Œ0; ˛.v/�, where ˛.v/ > 0 with v 2 U.

One advantage of the exponential map in this setting is that we can avoid the
calibration of different alternative models inside U . For each unit vector v 2 U,
there exists a unique geodesic connecting points on the boundary of U with point
p0. This geodesic is given by 
.t/ D expp0

.tv/ for t 2 Œ0; ˛.v/�.

5 WEIGHT FUNCTION DEFINITION

Variations of the chosen model are not equally material and they might all take place
with different probabilities. By introducing a nonlinear weight function (kernel), K,
over the set U , we can easily assign relative relevance to each alternative model and
determine the credibility of the underlying assumptions that would make alternative
models partially or relatively preferable to the nominal one, p0. The particular choice
of kernel structure depends on various factors, such as model usage, distance from
p0 and sensitivity to different changes.

In what follows, we define a general weight function K and show that under cer-
tain conditions it is well defined and unique. In general, we consider K to be a non-
negative and continuous function that depends on the local geometry of M by incor-
porating a Riemannian volume associated with the Fisher–Rao information metric,
which is given by dv.p/ D

p
det.I.�// d� . The volume measure is the unique Borel

measure on M (Federer 2014). With respect to a coordinate system, the informa-
tion volume of p represents the amount of information a single model possesses
with respect to its parameters. For example, a small dv.p/means the model contains
much uncertainty and requires many observations to learn.

As the underlying factors that influence the perturbations of the given model hap-
pen with some likelihood, we treat all of the models inside M as random objects.7

7 For example, the uncertainty surrounding data, calibration or model selection.
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As a consequence, we require K to be a probability density with respect to the Rie-
mannian volume, ie,

R
M K dv.p/ D 1. In addition, we state that the right model does

not exist and that the choice of p0 is to some extent a subjective preference.

DEFINITION 5.1 An admissible weight function K defined on M satisfies the
following properties:

.K10/ K is continuous on M;

.K20/ K > 0 for all p 2M;

.K3/
R
M K dv.p/ D 1.

Recall that to compute the n-dimensional volume of the objects in M, one con-
siders a metric tensor on the tangent space TpM. In particular, the Fisher–Rao infor-
mation metric I on M maps each p 2 M to a volume dv.p/, which is symmetric,
and an n-form that further defines an n-dimensional volume measure on any measur-
able subset U � M by Vol.U / D

R
U

dv.p/. A smooth probability density K over
M with respect to the Riemannian measure induces a new absolutely continuous
probability measure � with respect to Vol:

�.U / D

Z
U

d� D
Z
U

K dv.p/ (5.1)

for all measurable U �M and �.M/ D 1. The pair .M; �/ is then called a weighted
manifold, or a Riemannian metric–measure space, and it is proved to be a nontrivial
generalization of Riemannian manifolds (Morgan 2005).

The weight function K of Definition 5.1 represents a general characterization of a
probability density over the Riemannian manifold M. In order to tuneK for a proper
analysis of model risk, we need to impose additional properties that are connected
with the specific uncertainties surrounding the given model.

From a practitioner’s point of view, models that do not belong to the chosen neigh-
borhood U are not relevant from the perspective of model risk, and so they do not
add any uncertainty. Therefore, we assume the weight function K to be nonnega-
tive only over the neighborhood U , and zero elsewhere. Moreover, the translation of
changes in various underlying assumptions, data or calibration into changes in output
and further usage of the model are going to vary with respect to the direction of the
change. Hence, we requireK to be continuous along the geodesic curves 
 uniquely
determined by v 2 S.p0; 1/ � Tp0

M starting at p0 and ending at the points on @U .
These additional properties motivate the following modifications of .K10/ and .K20/
in Definition 5.1:

.K1/ K is continuous along all geodesics 
 starting at p0 for all unit vectors on
S.p0; 1/ and ending at the points on @U ;

www.risk.net/journals Journal of Computational Finance



12 Z. Krajčovičová et al

.K2/ K > 0 for all p 2 U nf@U g, K > 0 for all p 2 @U , and K D 0 for all
p 2MnfU g.

A weight function satisfying properties .K1/–.K3/ takes into consideration and is
adjusted according to the different directions of the changes, ie, it prescribes different
sensitivities to different underlying factors.

The construction of a weight function on a given Riemannian manifold may
become technically difficult since it requires precise knowledge of the intrinsic
geometry and structure of the manifold. In order to overcome this difficulty and
determine a weight function K that satisfies all of the required properties, we intro-
duce a continuous mapping from a manifold endowed with a Euclidean geometry to
the model manifold endowed with a Riemannian geometry that preserves the local
properties. In summary, we construct three mappings: the exponential map expp0

,
the polar transform P and a further coordinate transform ��. Euclidean geometry is
well understood and intuitive, and thus the construction of a function on this space is
relatively easy and intuitive. The steps of the construction and the associated proofs
are relegated to the online appendix, as we believe this will improve the readability
and flow of the paper.

6 MEASURE OF MODEL RISK

In this section, we introduce a definition of the quantification of model risk, relate it
to the concepts we have already introduced and study some realistic applications.

Recall that we have so far focused on a weighted Riemannian manifold .M; I; �/

with I the Fisher–Rao metric and � as in (5.1). The model was assumed to be identi-
fied with a distribution p 2M. More likely, a practitioner would define the model as
some mapping f W M! R with p 7! f .p/, ie, the model outputs some quantity.8

We introduce the normed space .F ; k � k/ such that f 2 F . Though not strictly
necessary at this stage, we shall assume completeness so that .F ; k � k/ is a Banach
space.

DEFINITION 6.1 Let .F ; k � k/ be a Banach space of measurable functions with
respect to �. The model risk Z of f 2 F and p0 is given by

Z.f; p0/ D kf � f .p0/k: (6.1)

8 This is not always the case, but we can proceed along these lines depending on the usage given to
the quantification itself. For example, an inter(extra)polation methodology on a volatility surface is
a model whose output is another volatility surface, not a number. If we want to quantify the model
risk of that particular approach for Bermudan derivatives, we might consider its impact on their
pricing.

Journal of Computational Finance www.risk.net/journals
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Note that the measure represents the standard distance. All outcomes are con-
strained by the assumptions used in the model itself, so the model risk is related to
changes in the output while relaxing and changing them.

The quantification of model risk can be thought of as a model with a purpose,
such as the allocation of provisions, capital calculation or the comparison of mod-
eling approaches. The possibilities are endless, so we might have started with some
T W F ! F and setZ.f; p0/ D kT ıf k;9 however, we think (6.1) is general enough
for our present purposes.

In what follows, we consider four examples of Definition 6.1. Their suitability
very much depends on, among other factors, the purpose of the quantification, as we
shall see later.

(1) Z1.f; p0/ for f 2 L1.M/ represents the total relative change in the outputs
across all relevant models:

Z1.f; p0/ D kf � f .p0/k1 D

Z
M

jf � f .p0/j d�:

(2) Z2.f; p0/ for f 2 L2.M/ puts more importance on big changes in the out-
puts (big gets bigger and small gets smaller). It would allow us to keep some
consistency across calibration processes such as the maximum likelihood or
least squares algorithms:

Z2.f; p0/ D kf � f .p0/k2 D

�Z
M

.f � f .p0//
2 d�

�1=2
:

(3) Z1.f; p0/ for f 2 L1.M/ finds the relative worst-case error with respect to
p0:

Z1.f; p0/ D kf � f .p0/k1 D ess supMjf � f .p0/j:

Further, it can point to the sources of the largest deviances: using exp�1p0
, we

can detect the corresponding direction and size of the change in the underlying
assumptions.

9 For example, another possibility is to use



 f

f .p0/





 or




f � f .p0/f .p0/





:
These functional forms would allow us to obtain a dimensionless number, which might be a
desirable property.
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(4) Zs;p.f; p0/ for f 2 W s;p.M/ is a Sobolev norm that can be of interest in
cases where not only f but also its rate of change is relevant:10

Zs;p.f; p0/ D kf � f .p0/ks;p D

 X
jkj6s

Z
M

j@k.f � f .p0//j
p d�

�1=p
:

A sound methodology for model risk quantification should at least consider the
data used for building the model, the model’s foundation, the IT infrastructure, over-
all performance, model sensitivity, scenario analysis and, most importantly, usage.
Within our framework, we address and measure the uncertainty associated with
the aforementioned areas and the information contained in the models. Choosing
the embedding and proper neighborhood of the given model takes into account the
knowledge and uncertainty of the underlying assumptions as well as the data and
the model’s foundation. The weight function that assigns relative relevance to the
different models inside the neighborhood considers the model sensitivity, scenario
analysis, the importance of the outcomes with connection to decision making, the
business and the intended purpose; it also addresses the uncertainty surrounding the
model’s foundation. Besides, every particular choice of the norm provides different
information about the model. Finally, and most importantly, the model risk measure
considers the usage of the model represented by the mapping f .11

7 APPLICATION TO CAPITAL CALCULATION

In this section, we contextualize the proposed framework by applying it to a credit
risk model used by a commercial bank. More specifically, we employ the proposed
methodology for the quantification of model risk to a probability of default (PD)
model of high default portfolios used for capital calculation.12 We analyze differ-
ent scenarios and risk parameter assumptions in order to assess how these scenarios
affect the economic capital based on methodologies commonly applied by internal
ratings-based (IRB) institutions.

In general, the purpose of a credit risk model is to estimate the PD of future credit
losses on a bank portfolio. For a given time horizon, the model generates a distribu-
tion – a probability density function – of future losses that can be used to calculate the
losses associated with any given percentile of the distribution. In practice, banks con-
centrate on two such loss components: expected loss (EL) and unexpected loss (UL).
EL is the mean of the loss distribution and represents the amount a bank expects

10 An example is a derivatives model used for not only pricing but also hedging.
11 Or, equivalently, by any possible transformation T W F ! F .
12 Note that the purpose of this analysis is only to illustrate the proposed framework, so it does not
cover all potential risks inherent in PD calculation.
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to lose on average on its credit portfolio over a given time horizon. In contrast, UL
refers to the portfolio risk that is computed as the losses associated with some high
percentile of the loss distribution (eg, the 99.99th percentile); it thus covers all but
the most extreme events. For more details about credit risk, see, for example, Bluhm
et al (2016).

Capital models are usually based on three risk parameters: PD, exposure at default
(EAD) and loss given default (LGD). Under the Basel II IRB framework, the PD per
rating grade is the average percentage of obligors that will default over a one-year
period. The EAD gives an estimate of the amount that would be outstanding should
the borrower default, and the LGD represents the proportion of the exposure that
will not be recovered after default. These parameters are aggregated from obligor
level (risk bucket) to portfolio level, with the correlation set by the regulator or the
financial entity.

Let N be the number of borrowers in a given loan portfolio. Assuming a uniform
value of LGD, the aggregated expected loss amount, L, can be calculated as the sum
of individual L in the portfolio, ie,

L D

NX
iD1

EADiLGDiPDi : (7.1)

Based on the loss distribution, the capital requirement for a bank under the IRB
approach at confidence level ˛ can simply be calculated as the difference between
EL and the percentile for the level being considered:

C˛.L/ D qL.˛/ � EL; (7.2)

where qL.˛/ is the ˛-quantile of L defined by P.L 6 qL.˛// D ˛. In practice,
the portfolio is categorized into homogeneous risk buckets, j D 1; : : : ;M , and the
capital calculation is done on the risk-bucket level. The same default probabilities
PDj and LGDj are then assigned to all borrowers in each of these buckets.

When modeling credit risk losses, several sources of model risk may arise. Exam-
ples are a scarcity of default events, a lack of data driving calibration and backtesting,
correlations between failures, wrong-way exposure (a growing utilization of credit
lines in case there is an increase in PD), or independence of PD and LGD (in periods
of increasing default rate, PD and LGD will not increase).13

13 Empirical evidence has led to developments in credit risk models that take into account the
dependence between PD and LGD. It was shown that LGD exhibits not only volatility but also
a positive correlation with default rates or PD (Han 2017). One of the reasons for this relation is
the business cycle. However, despite strong evidence of PD–LGD dependence, some commercial
credit risk packages still rely on constant or independent assumptions regarding LGD.
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For the purpose of illustration, we will only focus on the quantification of model
risk arising from PD estimation at the capital level, so we assume both LGD and
EAD to be known and independent of PD.

7.1 PD model .p0/

The PD is the likelihood that an obligor will default within one year given all
of the currently available information. We consider a particular internal model for
the long-run PD estimation that serves our regulatory purposes. The PD model is
built on internal behavioral data and bureau information. Each customer account is
scored and the portfolio is categorized, with respect to the scoring, into M homo-
geneous risk buckets. The number of defaults in each bucket is assumed to follow
a binomial random variable, in which the defaults are independent across customers
and over time, and occur with common probability. The underlying point-in-time
(PIT) PD model is calibrated to the latest observed PD, ie, the observed default fre-
quency (ODF), that is, just the approximation of the maximum likelihood estimator
of the parameter of the binomial distribution. PIT PD is then adjusted by the cen-
tral tendency (CT) to generate the long-run PD based on a combination of historical
misalignment of the underlying model and expert judgment. The through-the-cycle
(TTC) PD, ie, the pooled PD for each risk bucket, is given by the formula below:

PDi D ODFi
CT

ODF
; (7.3)

where

� ODFi is the observed default frequency obtained for each risk bucket i over
the most recent quarter of the calibration sample;

� CT refers to the central tendency used for the TTC adjustment, which is based
on external macroeconomic data series in order to extend the internal ODF
series;14 and

� ODF is the average observed default frequency over the given segment
portfolio.

Thus, the long-run ODFs are calculated for each risk bucket and are adjusted to the
average PD observed for each portfolio over a complete economic cycle. The PD
therefore gives the likelihood that obligors with a particular rating grade at the start
of a given time period will default within this period. The distribution of defaults
under our simplifying assumptions would equal the loss distribution of a portfolio

14 In case there is not enough data history in order to cover the whole economic cycle.
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TABLE 1 Normalized PD and frequency of accounts in the portfolio across risk buckets.

Risk buckets‚ …„ ƒ
1 2 3 4 5 6 7 8 9 10

PD 0.276 0.198 0.181 0.090 0.085 0.065 0.037 0.034 0.023 0.012
N (frequency) 0.007 0.012 0.021 0.055 0.066 0.088 0.176 0.280 0.241 0.056

for which all the borrowers had an EAD of 1, an LGD of 0:45 and a maturity of one
year.

The empirical analysis is based on a hypothetical portfolio that was elaborated in
order to represent the behavior of one particular segment consisting of N D 9860

clients. All customers are categorized by risk-scoring into buckets that are heteroge-
neous at a defined confidence level and represent the grade of credit quality. We
assume a portfolio consisting of ten buckets (M D 10) with a monotonous PD
related to the model scores. Higher scores imply lower ODFs.

All customers within the same risk bucket are assigned the same pooled PD, which
can be thought of as the average of individual PDs. This means that the pooled PD
assigned to a risk bucket is a measure of the average value of the PDs of customers
in that bucket.

The normalized PDs vary between 0:01143 and 0:27638 and decrease from lower
to higher risk ratings, although this decrease is moderate (Table 1). The distribution is
highly skewed to the right (as expected), with mean and variance equal to 0:4177 and
0:08768, respectively. The frequency of accounts across buckets ranges from 0:70%
to 28:89% (Table 1). The low PD buckets account for the majority of the portfolio,
where approximately 75% of the total accounts have PDs lower than 0:04.

There are many factors that influence the direction and extent of the relations
between the developments in defaults and the risk factors influencing solvency. These
are the macroindicators, market factors and idiosyncratic factors. For example, for-
eign clients tend to be more risky than domestic ones; the risk of default is expected
to grow with increasing interest rates, unemployment rates or percentage deviation
between the exchange rate level at which the individual loan was granted and the
actual exchange rates.

7.2 Quantification of model risk

We can better understand the impact of the uncertainty surrounding PD on the capital
calculation by obtaining a mathematical representation of the underlying statistical
distribution over the portfolio (see Figure 1).
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FIGURE 1 Distribution of the PD within the portfolio.
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A change in the model assumptions or segmentation would represent a shift in
the parameters defining the statistical distribution.15 Based on the goodness-of-fit,
we propose predicting the best future values of our given portfolio by using a two-
parameter inverse Gaussian distribution (ING), given by

p.x; �; �/ D

�
�

2�x3

�1=2
exp

�
�

�

2�2x
.x � �/2

�
with mean � and variance �2 D �3=�.16 This means that we consider our model
space to be a manifold of the ING distribution family, M, parameterized by .�; �/.

The initial model, p0 2 M, was arrived at via maximum likelihood estimation
(MLE), with parameters �0 D 0:5418 and �0 D 4:8075, ie, p0 D ING.�0; �0/.
With this representation, we take into consideration how specific risk buckets per-
form within the default portfolio or, alternatively, the weight of default of each grade
within the portfolio.

The PD model allows us to estimate the PD for a particular segment across dif-
ferent risk buckets within the limits of the defined parameters. The model represents

15 Note that we can work equally well with empirical distributions (histograms) and use the Fisher–
Rao distance between them (Navab et al 2010). However, to properly illustrate the aforementioned
framework, we approximate the portfolio by a parametric probability distribution.
16 The inverse Gaussian density function represents a wide class of distributions, ranging from
highly skewed distributions to symmetrical ones as �=� varies from 0 to1. For more details on
the inverse Gaussian distributions, see, for example, Tweedie (1957).
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a probability distribution of several correlated and mutually interacting events. Note
that the parameters of the distribution are nonlinear functions of the individual PD
and N for each risk bucket, ie, �.PD; N / and �.PD; N /. For the quantification of
model risk, it is important to understand both how the model integrates the infor-
mation provided by the sample and how sensitive it is to changes in the sample
characteristics (see Figure 2).

7.3 Identification of potential sources of model risk

To properly assess model risk, we first need to identify and describe the potential
sources of model risk, covering model assumptions, weaknesses and arbitrariness
in the development process. For a given PD model, the main risk may arise from
the segmentation and risk-scoring applied, bias toward historical experience, unex-
pected moves in the exchange rate, relevant changes in macrovariables, missing val-
ues, incorrect structure and methodology, inappropriate factors used for the TTC
adjustment, or the subjective selection of some parameter values.

The impact of these risk sources should be expressed quantitatively and then com-
bined based on whether the separate model risks are independent, or whether some
amplify, counteract or absorb each other. In what follows, and for the sake of illus-
tration, we concentrate on the risk inherent in the applied segmentation arising from
the PD estimation. The given model p0 is only one possible description of the data,
incorporating expert knowledge and assumptions directed by expected use as well
as implementation constraints. Any uncertainty and errors in the estimation of PD
influence the required capital.

7.4 Choosing a suitable Riemannian metric

We develop our example on the assumption that the model space should resemble the
metric properties of a Riemannian manifold of negative curvature equipped with the
Fisher–Rao information metric. Since there are many possible choices of metric on
a given differentiable manifold, it is important to consider the additional motivating
properties of the Fisher–Rao information metric.

(1) The Fisher–Rao information metric is based on the notion of maximum
entropy, which might be geometrically interpreted by the possible trajectory in
a statistical manifold that describes its evolution. We can examine the degree
of uncertainty by measuring the evolution of entropy in the model space.

(2) The Fisher–Rao information may be thought of as the amount of information
a sample supplies with respect to the problem of estimating the parameters.17

17 Since the MLE is asymptotically unbiased, the inverse Fisher information represents the
asymptotic fluctuations of MLE around the true value.
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FIGURE 2 Probability density functions of inverse Gaussian distributions.
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unimodal with a mode between 0 and �. As �=� increases, the distribution becomes more skewed to the right and
the mode decreases relative to the mean.
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(3) The Fisher–Rao information metric determines a constant negative Gaussian
curvature for the ING distribution (see Chen (2014) for details). The metric is
given by

g.�; �/ D

2664
1

2�2
0

0
�

�3

3775 :
Negative curvature guarantees that MLE estimates are well defined and unique
(Said et al 2017).

In this metric, the model space has nonzero curvature and reflects model specification
sensitivity accurately. For further discussion on the selection of a proper Riemannian
metric, we refer the reader to Krajčovičová and Pérez-Velasco (2018).

7.5 Neighborhood selection

Following Section 4, defining a proper neighborhood around the given model is a
trade-off between plausibility and severity in order to ensure that no harmful but
plausible risks are missed and irrelevant risk factors are not included. As has already
been mentioned, we focus on the sensitivity of the chosen segmentation and the
inherent uncertainty. Namely, we analyze the model risk arising from uncertainty
about the default counts. We ask: how different could the model be if the default
counts were undercounted or overcounted under the assumption of a fixed number
of risk buckets?

The default rates are calculated at the risk-bucket level, so the misestimation in
each bucket is going to contribute to the overall uncertainty. Therefore, we consider
all possible deviations within Œ�0:3; 0:3� standard deviation changes in each of the
ODFi , i D 1; : : : ; 10.18 We take into account all possible shifts in each bucket sep-
arately as well as all of the relevant combinations. The limit on the deviation was
set to preserve the heterogeneity among risk buckets in terms of PD and to restrict
the variability of nearby risk buckets, which could be influenced by the presence of
outliers, noise or variation in the density of the points on the manifold.19

For the given manifold M and point p0 2 M, in order to build the neighbor-
hood U we start by fitting probability distributions to all of the combinations of the
maximal ˙0:3 standard deviation changes in the corresponding ODFs (ie, 210 dis-
tributions), first to 1 000 000 and then to 10 000 000 random combinations within
the interval .�0:3; 0:3/. The scale parameter varies in the interval Œ�1; �2� D

18 Recall that ODFs refer to maximum likelihood estimators of the binomial distributions for each
risk bucket.
19 The given portfolio (sample) is going to constrain the specificity and sensitivity possible.
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FIGURE 3 Three-dimensional, multidimensional scaling embedding of U .
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Œ0:517300; 0:565403�, and the mean is in the interval Œ�1; �2� D Œ4:58638; 4:95968�.
These fitted distributions form our chosen neighborhood.20 For illustration, Fig-
ure 3 represents the three-dimensional embedding of U , the set of alternative models
around p0 determined by the estimated ING distributions.

Within this chosen neighborhood, we can analyze and quantify the possible impact
of the individual shifts and all of their possible combinations on the model output that
might be capable of causing material model movements. Note the conservatism in
the chosen neighborhood.

REMARK 7.1 Different adjusted data may result in the same distributions. Con-
sidering only movements in the distribution guarantees that the quantification of

20 The key idea is to leave the data to determine the neighborhood instead of imposing one. With
an increased number of sampled distributions, we can see convergence in the weight function (see
Section 7.6) as well as in the overall calculated model risk (see Section 7.7).
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model risk will not depend on double-count risk factors that are highly correlated
with factors already included in the analysis.

7.6 Choosing an appropriate weight function

In what follows, we show how to estimate the weight function entirely from the
data, without imposing any additional constraints or particular structures. Roughly
speaking, once we assume that the alternative models are random objects valued
on the Riemannian manifold, the weight function estimation consists of having the
alternative models within U “contribute” to the estimate at a given point according
to their distances from p0.

More precisely, let .M; g/ be a Riemannian manifold, and let us consider
p1; : : : ; pn independent and identically distributed random points on M with den-
sity function K.p/. The estimate of K.p/ is then a positive function of the geodesic
distance in U , which is then normalized by the volume density of .U; g/ to account
for curvature. These estimators are an average of the weights depending on the dis-
tance between pi and p0. Formally, using alternative models p1; : : : ; pn, we propose
defining the weight function by a map Kn W p 2 U ! Kn.p/ 2 R, given by

Kn.p/ D
1

�p0
.p/

wi for all i D 1; : : : ; n; (7.4)

where �p0
.p/ denotes the volume density function and wi are assigned weights such

that
Pn
iD1wi D 1.

The weights are determined as follows. First, we calculate the geodesic distance of
all of the estimated distributions inside U from p0. Next, we determine the number
of levels m with respect to the maximal distance from p0, ie,

L.�i / D fp 2 U j �i�1 < d.p0; p/ 6 �ig (7.5)

for a sequence �1; : : : ; �m with �m D max d.p0; p/ and �i � �i�1 D �m=m. We
set m D 5000 in the case of 1 001 024 distributions inside U and m D 50 000 for
10 001 024 alternative models inside U . Next, we examine the number of distribu-
tions within all of these m level sets and, based on the concentration within these
levels, we calculate normalized weights, ie, wi . The normalized average frequen-
cies of alternative models within U for 1 001 024 and 10 001 024 with respect to the
distance from p0 are illustrated in Figures 4 and 5, respectively. The resulting nor-
malized weights are then multiplied by the associated values of the volume density
at p 2 U .

REMARK 7.2 The initial model and data single out a particular choice of weight
function through the concentration and variations of the fitted probability distribu-
tions on the manifold.
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FIGURE 4 The weight function given by the average concentration of the alternative
models with respect to their geodesic distance from p0 for 1 000 000 C 1024 alternative
models with 5000 level sets.
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FIGURE 5 The weight function given by the average concentration of the alternative
models with respect to their geodesic distance from p0 for 10 001 024 alternative models
with 50 000 level sets.
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7.7 Measure of model risk

The last step in our proposed framework is the choice of a proper norm and the evalu-
ation of the identified model risk described in Section 6. We suggest using theL2.M/
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norm that in our particular example guarantees consistency with the maximum like-
lihood used for estimation and amplifies big changes in the outputs, ie, capital level.
With this choice, we obtain:21

Z.C.p/; p0/ D kC.p/ � C.p0/k2 D 2:35 � 10
�4:

This means the model risk from segmentation represents the 0:0235% variation of
capital inside U .22 The model risk is obtained in terms of capital, thus allowing for
easy interpretation.

8 CONCLUSIONS AND FURTHER RESEARCH

In this paper, we introduce a general framework for the quantification of model risk
using differential geometry and information theory. We also provide a sound mathe-
matical definition of model risk using weighted Riemannian manifolds, which should
be applicable to most modeling techniques using statistics as a starting point.

Our proposed mathematical definition is to some extent comprehensive in two
complementary ways. First, it is capable of coping with relevant aspects of model
risk management, such as model usage, performance, mathematical foundations,
model calibration or data. Second, it has the potential to assess many of the math-
ematical approaches currently used in financial institutions: credit risk, market risk,
derivatives pricing and hedging, operational risk or XVA (valuation adjustments).

It is worth noting that the approaches in the literature, to the very best of our
knowledge, are specific in these two ways: they consider very particular mathe-
matical techniques and are usually very focused on selected aspects of model risk
management.

There are many directions for further research, all of which we find to be of both
theoretical and practical interest. We shall finish by naming just a few of them.

Banach spaces are very well known and have been thoroughly studied in the
realms of, for example, functional analysis. Weighted Riemannian manifolds are
nontrivial extensions of Riemannian manifolds, one of the building blocks of differ-
ential geometry. The study of Banach spaces over weighted Riemannian manifolds
will broaden our understanding of the properties of these spaces as well as their
application to the quantification of model risk.

Our framework can include data uncertainties by studying perturbations and met-
rics defined using the sample, which are then transmitted to the weighted Riemannian
manifold through the calibration process.

21 Model risk calculated with 1 001 024 distributions with a weight function based on 5000 level
sets is equal to 2:33499704056 � 10�4, while model risk based on 10 001 024 distributions inside
U with 50 000 distance levels is equal to 2:35152164064 � 10�4.
22 Note that this refers only to one source of model risk inherent in the model for capital calculation.
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The general methodology can be tailored and made more efficient for specific
risks and methodologies. For example, one may interpret the local volatility model
for derivatives pricing as an implicit definition of a certain family of distributions,
extending the Black–Scholes stochastic differential equation (which would be a
means of defining the lognormal family). For an example on financial derivatives,
we refer the reader to Krajčovičová and Pérez-Velasco (2018).

Related to the previous paragraph, and despite the fact that there is already liter-
ature on the topic, the calculation of the Fisher–Rao metric itself deserves further
numerical research so that more efficient algorithms can be derived.

DECLARATION OF INTEREST

The authors report no conflicts of interest. The authors alone are responsible for the
content and writing of the paper.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to José Carlos Colas
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models validation department at Banco Santander for providing insight and feedback
that greatly enhanced the examples in Section 7.

This work has been partially funded by EU H2020-MSCA-ITN-2014 (WAKEUP-
CALL Grant Agreement 643045), Spanish MINECO (Grant MTM2016-76497-R)
and Xunta de Galicia (Grant CN2014/044).

REFERENCES

Amari, S. I., Barndorff-Nielsen, O. E., Kass, R. E., Lauritzen, S. L., and Rao, C. R. (1987).
Differential geometry in statistical inference. In Lecture Notes – Monograph Series, Vol-
ume 10. Institute of Mathematical Statistics (https://doi.org/10.1214/lnms/1215467059).

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics 12, 171–178.

Bluhm, C., Overbeck, L., and Wagner, C. (2016). Introduction to Credit Risk Modeling.
Chapman & Hall/CRC Press.

Boucher, C. M., Danı́elsson, J., Kouontchou, P. S., and Maillet, B. B. (2014). Risk models-
at-risk. Journal of Banking & Finance 44(1), 72–92 (https://doi.org/10.1016/j.jbankfin
.2014.03.019).

Branger, N., and Schlag, C. (2004). Model risk: a conceptual framework for risk measure-
ment and hedging. EFMA 2004 Basel Meetings Paper, European Financial Manage-
ment Association (https://doi.org/10.2139/ssrn.493482).

Chavel, I. (2006). Riemannian Geometry: A Modern Introduction. Cambridge Studies
in Advances Mathematics, Volume 98. Cambridge University Press (https://doi.org/
10.1017/CBO9780511616822).

Journal of Computational Finance www.risk.net/journals



A new approach to the quantification of model risk for practitioners 27

Chen, W. W. S. (2014). Finding Gaussian curvature of lifespan distribution. Applied
Mathematics 5, 3392–3400 (https://doi.org/10.4236/am.2014.521316).

Christodoulakis, G., and Satchell, S. (2008). The validity of credit risk model validation
methods. In The Analytics of Risk Model Validation, Christodoulakis, G., and Satchell, S.
(eds), pp. 27–44. Academic Press (https://doi.org/10.1016/B978-075068158-2.50006-
8).

Cont, R. (2006). Model uncertainty and its impact on the pricing of derivative instruments.
Mathematical Finance 16(3), 519–547 (https://doi.org/10.1111/j.1467-9965.2006.00281
.x).

Federer, H. (2014). Geometric Measure Theory. Springer.
Gibson, R. (2000). Model Risk: Concepts, Calibration and Pricing. Risk Books, London.
Han, C. (2017). Modelling severity risk under PD–LGD correlation. European Journal of

Finance 23(15), 1572–1588 (https://doi.org/10.1080/1351847X.2016.1212385).
Hull, J., and Suo, W. (2002). A methodology for assessing model risk and its application

to the implied volatility function model. Journal of Financial and Quantitative Analysis
37, 297–318 (https://doi.org/10.2307/3595007).

Joshi, S., Srivastava, A., and Jermyn, I. H. (2007). Riemannian analysis of probability den-
sity functions with applications in vision. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR2017) Proceedings, pp. 1664–1671. IEEE, Piscataway,
NJ.
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