
expect a negative four-standard-deviation event once every 100 years,
where the actual expectation is once a year. In figure 1, we illustrate the
tail probabilities for a range of events. The increase in probability of an
extreme event once we get beyond 1.75 standard deviations can clearly
be seen to be greater than that expected by a normal distribution.

As IC increases, both skew and kurtosis increase. Increasing skew should

There have been many occurrences of extreme returns from the fund
management community, but of course only the negative ones make
the headlines. The explanation for such events is frequently that fi-

nancial asset returns exhibit extreme values more often than expected by
the normal distribution.1

In studying the assets themselves, and making inferences about the like-
lihood of extreme values of portfolio returns, the implicit assumption is
that the portfolio positions are constant through time.1 In practice they are
not, and regardless of the distribution of the financial asset returns, the
portfolio returns might exhibit more extreme values than the financial as-
sets themselves purely because the positions are changing.

In this article, we examine the skew and kurtosis of portfolio residual2 re-
turns, emphasising the difference between asset and portfolio. With the as-
sumption that the asset residual returns are normally distributed, when
portfolio weights are fixed there is no difference between the skew and kur-
tosis of assets and portfolios (that is, skew = 0 and kurtosis = 3). But when
portfolio weights vary through time, as they do for actively managed portfo-
lios, portfolios can exhibit high kurtosis even if the assets themselves do not
– solely because of the weight volatility. This is most pronounced in portfo-
lios of few assets, and is also affected by the quality of the position taking.

Buckle (2004) showed that, assuming the Treynor & Black (1973) se-
curity selection model at each investment period with positions derived
from modern portfolio theory3, the skew and kurtosis of the resultant resid-
ual portfolio returns over multiple investment periods are given as:

(1)

and:

(2)

where ∆ = IC2/(1 – IC2), with IC denoting the information coefficient4, and
n denotes the number of assets in the universe (not including the market
itself, which we assume to be an asset available to the investor).

Buckle does no more than cite these results so we further that work with
a brief study here. Equations (1) and (2) are not readily interpreted as they
stand, but there are some interesting special cases. We observe that as the
number of assets increases, skew tends to zero and kurtosis tends to three.
This result holds for any level of IC. It is an appealing result because, if we
have enough assets in our portfolio, the portfolio returns should exhibit no
skew and kurtosis in excess of that expected by the normal distribution.

The situation is less comforting when the number of assets is small. At
the limit when there is just one asset (in addition to the ‘market asset’),
that is, n = 1, as IC decreases so skew tends to 6 × IC and kurtosis tends
to nine. With IC typically less than 0.1 in practice, we can see that the
residual portfolio return distribution will not be particularly skewed, but
will exhibit kurtosis three times as large as that expected by the normal
distribution. In fact, in a simulation of Buckle’s framework, we found that
the frequency of a negative three-standard-deviation event or worse is ex-
pected by the normal distribution to be one per 1,000, but was observed
to be one per 100. Put plainly, the normal distribution tells us to expect a
three-standard-deviation event once every four years, where the actual ex-
pectation is once every four months. The normal distribution says we should
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Portfolio skew and kurtosis
by David Buckle

1. Tail probabilities of excess returns relative
to the normal distribution
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2. Skew in active portfolio returns (n assets)
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1 See, for example, Simons (2000). This is a general summary article on value-at-risk,
including an example fund analysis. We use it as a reference of our statements
throughout this article. We also use the data tabulated in it in our empirical example
2 By residual return, we mean the non-market component of return in a capital asset
pricing model-style factor model
3 The underlying mathematical model that Buckle (2004) used to derive equations (1)
and (2) is summarised in the appendix. The key references are Buckle (2004), Markowitz
(1952) and Treynor & Black (1973)
4 IC is defined as the correlation between forecast and return, and therefore a measure of
forecast ability. See Grinold & Kahn (1999)

3. Kurtosis in active portfolio returns (n assets)
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be expected because portfolio returns clearly move toward a chi-squared
distribution with perfect foresight (which exhibits skew). At its limit, kur-
tosis gets as large as 15. To some extent, we are less concerned with kur-
tosis when IC is high, because most of the extreme events will be positive
ones. However, it is worth noting that for any level of IC, we never have
less kurtosis than when IC is zero, and therefore kurtosis is always greater
than 3(1 + 2/n). Figures 2 and 3 show how skew and kurtosis both de-
crease with the number of assets, but increase with forecasting ability.

There is some evidence that asset returns are more fat-tailed than a nor-
mal distribution1, so we simulate Buckle’s framework with the normal dis-
tributions replaced by Student-t distributions. As is evident in figure 4, the
same characteristic of active portfolios exhibiting much larger kurtosis than
assets still prevails. As we know, when the degree of freedom is small,
asset kurtosis is larger than the normal distribution, but that characteristic
is exaggerated in the active portfolio. Additionally, as the degree of free-
dom gets large so the Student-t distribution tends to the normal distribu-
tion, and we recover our previous results. Perhaps more importantly, when
we simulated portfolios consisting of many securities, the skew and kur-
tosis tended to zero and three respectively, regardless of the fact that the
individual asset returns had higher kurtosis. This is expected because under
the model assumptions, it is clear that the excess returns for each asset are
independently identically distributed and therefore the central limit theo-
rem (where the sum of the returns from any distribution tends to a nor-
mal distribution) comes into effect for large asset universes.

To provide some empirical support for our work, we use Simons’ fund
data.1 Simons considered a US mutual fund that was benchmarked against
the S&P 500, and observed that its returns between May 11, 1999 and Oc-
tober 10, 2000 had a kurtosis of 25 whereas the S&P 500 had a kurtosis of
4.9 over the same period. Unfortunately, we do not have details on what
type of fund this is, but its kurtosis suggests that it is probably highly con-
centrated, so we take n = 1. Plugging this into equation (2) shows our
model estimate of fund kurtosis should be equal to nine. In this example,
we still underestimate the fund kurtosis. However, if we take the S&P 500
to be t-distributed with seven degrees of freedom, rather than normally
distributed, thereby accounting for the fact that the S&P itself had a high
kurtosis of 4.9 over the sample period, then our model estimates a fund
kurtosis of 23. This is close to the sample kurtosis of 25.

In conclusion, we caution against the measurement of tail behaviour of
assets, and infer from that the tail behaviour of active portfolios. We have
seen that even if the asset returns follow a normal distribution the portfo-
lio returns can exhibit substantially more extreme event risk than a nor-
mal distribution. When the asset returns follow a fatter-tailed distribution,
active portfolios can have very high kurtosis indeed. Active portfolios with
many assets are less likely to exhibit kurtosis than concentrated ones. ■

David Buckle is head of currency management at Merrill Lynch
Investment Managers in London. The views expressed in this article are
those of the author and do not necessarily represent those of Merrill
Lynch Investment Managers. Email: david_buckle@ml.com

90 RISK JUNE 2005 ● WWW.RISK.NET

Cutting edge  l Brief communication

For reference, we provide the mathematical model that Buckle
(2004) used to derive equations (1) and (2). Much of this is taken
directly from Buckle’s article.

Let the column vector rt denote the returns (in excess of the
risk-free rate) from our universe of assets over the single time peri-
od (t, t + 1). We decompose these returns into a market compo-
nent and an uncorrelated residual component, so that:

where µt is the market component, and θt is the vector of single-
period residual returns.

We suppose that the fund manager makes a forecast of the
residual returns and denote the forecast pertinent to time t by the
vector mt. We relate θt and mt by the equation:

where εt is the error in our forecast.
� Assumption. E[θ] = E[m] = E[ε] = 0 and the variances of θ, m
and ε are time-invariant and diagonal, and m and ε are indepen-
dent and normally distributed.

For each time period, our framework is identical to the Treynor
& Black (1973) security selection model. We have simply assumed
a sequence of these models such that the average single-period
alpha over time is zero (so it is not possible to beat the market
unless positions are varied through time).

The information coefficient, denoted IC, is the correlation
between the residual return of an asset and the forecast, thus:

where m and θ are an element of m and θ respectively.
� Assumption. IC is equal across all assets.

The active portfolio positions are denoted by yt and are a func-
tion of our forecasts.
� Assumption. Modern portfolio theory is used to convert fore-
casts into positions, so that yt = V–1mt where V denotes the
covariance matrix of ε.

Using this notation, the active portfolio return is yTθ, and it is
the skew and kurtosis of this random variable that we are inter-
ested in. ■

IC E m V m V= [ ] [ ] [ ]( )θ θ/
1
2

θ εt t t= +m

rt t t= +µ θ

Appendix. The mathematical model
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4. Active and passive portfolio kurtosis with
Student-t distributed asset returns
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