
A MA operational risk models require translating available information 
such as internal and external losses, scenarios, business controls and 
environment into frequencies and severities. 

Distribution fitting is a technique often used for such a translation. In this arti-
cle we will address three issues: 

1 Definition of goodness of fit
2 Distributions that should be used for fitting
3 Methods that should be used for fitting

Goodness of fit distance
In order to define what a good fit is, one needs to introduce a measure of closeness 
for distributions. A well-known example is Kolmogorov-Smirnov (KS) distance:

dKS (F,G) = sup
x
F(x) −G(x)

According to Kolmogorov-Smirnov distance, a cdf F is a good approximation 
of a cdf G, if the maximal vertical distance between the graphs of the two cdfs 
is small.

But is Kolmogorov-Smirnov distance a good definition of distribution close-
ness? The answer depends on the quantities being measured with the help of the 
fitted distributions. In practical problems, one is interested not in distributions, 
but in some statistics of the distribution such as mean, quantile, expected loss in 
a layer, shortfall, etc. From that point of view, a good approximation of the true 
distribution should give a good approximation to the statistics of interest. 

For risk measurement application, computation of quantiles is of significant 
interest. Typically, one would like to guarantee that the relative error in measuring 
the quantiles is small. In order to measure goodness of relative quantile approxi-
mation, we introduce relative quantile distance:

drq (F,G) = sup
q
ln F −1(q)[ ]− ln G−1(q)[ ]

For example, if drq (F,G) < 0.1, then replacing distribution G with distribution F 
does not lead to more than 10% error in estimation of the quantiles. The relative 
quantile distance can be visualised by looking at Q-Q plot in log-log co-ordinates. 
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The principles of 
distribution fitting
Mikhail Makarov examines some of the challenges around 
fitting distributions properly to op risk models for the advanced 
measurement approach

In frequency-severity models, one is interested in getting a relatively precise esti-
mation for quantiles of the aggregate distribution S

S = X
N

∑
while the fitting is done for a single loss severity X. Fortunately, a relatively small 
error in estimation of quantiles for single loss distribution leads to a relatively 
small error in estimation of quantiles for aggregate distribution, ie:

drq X
N

∑ , Y
N

∑
 

  
 

  = drq X,Y( )

A common mistake is to check goodness of fit for single loss distribution only 
up to 99.9% quantile. The confidence level of 99.9% should be used for aggregate 
loss distribution. The confidence level of single loss distribution for which good-
ness of test has to be tested can be – depending on the frequency – much higher. 

Quantile is not the only statistic of interest in risk measurement application. 
One can be interested in measuring exposure, shortfall etc. Similarly to drq, one 
can introduce a distance that guarantees a (relatively) small error in measuring the 
statistics of interest, and use that distance to define goodness of fit. 

Goodness of fit tests
KS distance allows for testing whether a fit cannot be used to model the data. One 
considers a hypothesis H0 = {Fit is equal to the true distribution} and computes the 
KS distance between the fit and the empirical distribution. If the KS distance is 
large, one rejects the hypothesis. It is important to understand that if the distance 
is small, one cannot accept the hypothesis (the test does not have the power to 
accept). A big advantage of the KS test is that it does not require the knowledge of 
the distribution type for the true distribution. To summarise, the KS test can be 
used to exclude really bad fits to the data, but it cannot be used to conclude that 
a given fit is the right one. 

A number of other tests (eg, Anderson-Darling) were designed to test hypothesis 
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H0 = {Fit is equal to the true distribution}. Unfortunately, in order to use those 
tests, one needs to know the distribution type of the true distribution, so what 
those tests gain in power, they lose in flexibility.

For many applications one does not need to test for equality – in fact a much 
weaker hypothesis of approximate equality needs to be tested. For example, if G 
denotes the distribution and F denotes the fit, one could be interested in testing 
the following hypothesis:

 

H0 = drq F,G( ) < 10%}{ .

Even for this weaker hypothesis, no tests are currently available.
It is worth mentioning that the graphical goodness of a test such as Q-Q plot 

should only be used for exploration. Even a person with a lot of experience can 
easily make a mistake judging goodness of fit from a graph. For example, it is not 
clear how to reject a fit by looking at Q-Q plot only. 

Which distributions should be used for fitting? 
Distribution fitting is performed in one of the following situations:
1 Distribution type is known and only parameters are to be determined.
2 Distribution type is not known; nevertheless a distribution is fitted with an aim 
to get a sufficiently good approximation to the true distribution. 

The first case occurs when analysis on many similar data sets has been performed 
before, and the distribution type determined. Alternatively, there may be some 
theoretical considerations that lead to a selection of a particular distribution type: 
for example, it follows from a physical model, such as: the motion of a small 
particle should follow a Brownian motion. 

The second case – the distribution type is not known – is much more common 
in practical applications, but is not well-studied. What if the distribution type 
selected for fitting is wrong? Can one still hope for a reasonable approximation of 
the true distribution? The only approach available at the moment that gives some 
answers to those questions is based on extreme value theory (EVT). 

According to EVT, a generalised Pareto distribution (GPD) can be used to 

approximate tails of a wide class of distributions. As GPD can approximate almost 
any tail, it seems reasonable to take large losses and fit them with GPD. Surely, 
even if the loss distribution is not GPD, it will be well approximated by the fit. 
Unfortunately, the situation is not that easy. The problem lies in the definition of 
‘approximately’ used by EVT: it guarantees a weak distribution convergence that 
is not sufficient to approximate quantiles, shortfalls and expected value. 

Take as an example distribution:

G(x) = 1− e
x ln2 x

, x ≥ e

Given a threshold u, the tail of G is represented by the excess distribution Gu

Gu(x) =
G(x + u) −G(u)

1−G(u)

For a sufficiently high threshold, the excess distribution can be approximated by 
GPD distribution in the sense of Kolmogorov-Smirnov distance

lim
u→∞

dKS GPD,Gu( ) = 0

However, for any threshold, GPD cannot estimate high quantiles of the excess 
distribution Gu as 

drq GPD,Gu( ) = ∞

Therefore, GPD does not give sufficiently good approximation to high quan-
tiles. A number of empirical studies indicate that in practice, GPD often over-
estimates quantiles, and suggest using more flexible distributions. Examples 
of more flexible distributions are generalised beta, loggamma, g-and-h. Using 
Taylor series as an analogy, one can think of GPD as the first (and most impor-
tant) term in the series, while distributions such as g-and-h add a second term 
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in the series. Unfortunately there is no systematic classification of distribution 
beyond GPD (the first term in the series), so one is forced to test via trial-and-
error with different distributions.

Which methods should be used for fitting? 
Theoretically, if the type of the true distribution is known, then the maximum 
likelihood method (ML) provides the best estimation for the parameters. Under 
very general assumptions, ML leads to an estimator that is:
(a)	 Asymptotically unbiased, ie, bias tends to zero as number of samples 

increases.
(b)	 Asymptotically efficient, ie, has lowest mean squared error for unbiased 

estimators.
(c)	 Functional invariant, ie, ML for parameters leads to ML for any other statis-

tics such as quantiles.

Clearly, the properties (a)–(c) indicate that ML is the best fitting method if the 
distribution type is known, and the data does come from the distribution. 

Although ML is the best estimator under perfect conditions, it is not robust 
– it can produce completely wrong results for polluted data or in cases when the 
distribution type was not selected appropriately. To demonstrate the non-robust-
ness of ML, consider fitting losses x1, … , xn with lognormal distribution. ML 
method leads to the following estimate of the first parameter:

µ =
1
n

ln(xk)
k=1

n

∑

The problem with this formula is that if x1 is equal to zero – or very close to it 
– then μ is not defined or is a very small number. Thus by including a very small 
number in the data set, one can completely change the estimates of the param-
eters and statistics such as quantiles.

Even if the original data set does not contain very small values, one can intro-
duce them by selecting the fitting threshold very close to the smallest loss.

Due to the non-robustness of ML, one needs to verify the results by determin-
ing whether the data set contains outliers, perform bootstrapping to check if the 
confidence intervals for the parameters are unusually high, perform visual tests 
etc. For example, the data set may contain an unusually high loss (eg, a one-in-
100-years event in the data set over five years). One needs to test whether the 

fitting results are sensitive to the high loss and if so, assign a smaller weight to 
the loss.

Several fitting methods more robust than ML have been developed. However, 
their properties are often not known, and ML after-data cleansing seems to be 
more appropriate.

A helpful approach for the ML method is an excess of threshold fitting. There 
are two reasons to fit distribution in excess of a threshold. First, many distribu-
tions are not flexible enough to fit huge data sets. Second, and more importantly, 
there is no reason to believe that small losses (high frequency, low severity) carry 
any useful information about large losses (low frequency, high severity).

If small losses are irrelevant for tail behaviour, there is no reason to use them 
for fitting. An excess of threshold fitting can not only simplify modelling, it 
can also be used to test the robustness of the model. Sensitivity of the model to 
small changes in threshold selection signals underlying problems, either with 
the data or distribution selection. One can test the sensitivity of the model to 
the threshold selection as a simple version of the bootstrap method. 

Conclusion
Thanks to Basel II and the effort of the banks with regard to data collection, 
the days when proper statistical techniques cannot be used are over. Instead, we 
are faced with the challenge of developing sound methodology for data analy-
sis. Most of the current papers that fit distributions to data encounter the three 
challenges raised in this article. First, often only visual techniques are used to 
check the goodness of fit. Second, distributions are selected using a trial-and-error 
approach. Third, distributions are often fitted using the ML method, without 
checking robustness. In order to get best results from the available data, practi-
tioners need to further investigate the three issues raised: which goodness of fit, 
which distribution, and which fitting method. n
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