
With a backdrop of subdued inflation, lower long-term 
interest rates and generally lower investment returns, the importance of pen-
sioner longevity has increased greatly in recent years. in the united kingdom, 
the growth of money-purchase private pensions since 1988 has meant that 
the volume of funds seeking an annuity now exceeds £7 billion per annum 
(source: abi). however, by far the biggest impact is in defined-benefit 
(‘final-salary’) pension schemes provided by employers. these schemes carry 
perhaps around £1 trillion of liabilities to current and future pensioners in 
the uk, so changes in life expectancy have a large macro-economic impact 
on the private sector.

a pension (or an annuity) is a liability to pay a set amount to the pensioner 
each year until death. in this sense, annuities from life-insurance companies 
and pensions from occupational schemes are identical liabilities. how long 
these pensioners live is clearly a crucial factor in the ultimate cost of provid-
ing pensions. there are two elements to assessing life expectancy: first, and 
most important, the current level of mortality; and second, the possible 
future path of mortality rates. this article is concerned with the first ele-
ment, namely measuring the current level of mortality. it explains the 
statistical methods currently in use amongst uk life insurers, and their con-
nection to well-known actuarial mortality laws. the article spells out some 
of the limitations of GlMs, and describes the survival-analysis techniques 
the life industry is switching to.

a variety of options are open to actuaries 
who want to model pensioner mortality, 

including Generalised linear Models 
(GlMs) and survival models. this 

article compares and contrasts these two 
classes of model, and explains the 

circumstances when survival models are 
preferable to GlMs
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Financial significance of longevity differentials
richards and Jones (2004) presented results on the financial impact of vari-
ous risk factors for longevity (see table 1). this table shows the change in 
annuity reserve which results from a single stepwise change in a risk factor. 
the base case is a high-income, high-social-status female living in the south 
of england, and each step away from this base case shows the change in the 
size of the reserve. for example, the impact of changing the gender in the 
base case in table 1 has been to reduce the annuity reserve by 11.5%. bearing 
in mind that an insurer’s profit at the time of writing is perhaps around 4-5% 
of premium, a change in any one of the listed risk factors will have a material 
impact on the profitability of annuity business. equally, for an occupational 
pension scheme it is very important to know the socio-economic mortality 
differentials (here ‘lifestyle’) to properly reserve for pension costs.

Models of Group Mortality
one of the simplest approaches to modelling mortality is to look at groups. 
first consider the situation with a group of nx identical lives all aged exactly 
x. the number of deaths observed can be treated as a random variable, Dx, 
which is distributed binomially with probability of death qx:

1 D n qx x x~Binomial ( , )

another common alternative for population data is where we do not have 
nx but instead have the central exposed-to-risk of death aged x+ 1–2 , denoted 
Ec

x+½. in this case, the number of deaths aged x last birthday is treated as a 
random variable with poission distribution:
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where μx+½ is the force of mortality at age x + 1–2  . statisticians call μx the 
hazard and Ec

x the waiting time.
if the data set is large enough, these sorts of model can work well. indeed, 

for population data sets, this sort of model is often the only option as 
population data is usually only available in grouped form. such models also 
work well for organisations such as the cMi in the u.k., which collects 
data from many life offices and publishes grouped data for assured lives 
going back to 1947.

for the insured data sets for a particular portfolio, however, this approach 
is less satisfactory for a number of reasons. as the data volumes are usually 
very much smaller, it is often necessary to group into age bands instead of 
individual ages, thus creating a so-called contingency table. a common 
approach is to use five-year age bands, which obviously involves loss of infor-
mation and means mortality is being modelled at the mid-point of a range of 
mortality rates.

the consequence of grouping is that it limits the number of risk factors 
which can be investigated. this is not a problem for population-based data, 
which is usually only available split by gender, but it is a serious limitation for 
insured data sets where one is very interested in a variety of other risk factors. 
in a contingency table, each cell represents a specific combination of risks: in 
order to perform tests of model fit, a minimum expected number of deaths 
in each cell is required (usually five in each cell). for many portfolios, this 
restricts the number of risk factors which can be investigated using group 
mortality. this is shown in table 2 for a medium-sized pension scheme, 
where we see how the 228 deaths in the pension scheme were distributed by 
age band and gender. We can see that even with just two risk factors – age 
and gender – the contingency table has some difficulties. there are fewer 
than five deaths for females in age bands 60-64 and 65-69, and the expected 
values are therefore likely to be on the borderline of acceptability for apply-
ing any tests of model fit, such as a χ2 test. however, for this pension scheme 
there are also two categories of membership on which we have data, groups 
a and b. table 3 shows that a contingency-table approach simply will not be 
valid, even though we only wish to investigate three risk factors. the only 
way this could be made to work with the current data would be to use fewer 
cells with wider age bands, such as collapsing the first two age ranges into 
60-69 and the last two into 85-94. this would obviously throw away even 

Table 1: Impact of selected risk factors on pension reserves
Factor Step change Reserve Change

Base case – 16.97 –

Gender Female-male 15.02 -11.5%

Lifestyle Top-bottom 13.31 -11.4%

Duration Short-long 11.88 -10.8%

Pension size Large- small 11.18 -5.9%

Region South-north 10.52 -5.9%

Overall – – -38.0%

source: richards and jones (2004), p39. annuities payable annually in 
advance valued at net 2.5% interest p.a.

Table 2: Death counts by age band and gender
Age band Females Males

60-40 3 9

65-69 3 14

70-74 19 22

75-79 26 33

80-84 19 23

85-89 20 11

90-94 19 7

Table 3: Death counts by age band, gender and  
membership category
Age band Females 

Group A
Females
Group B

Males
Group A

Males
Group B

60-64 0 3 3 6

65-69 2 1 11 3

70-74 13 6 19 3

75-79 12 14 27 6

80-84 12 7 14 9

85-89 10 10 5 6

90-94 11 8 7 0
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more information on age. the alternative is to add more years of experience, 
which might simply not be available.

one solution to the problem of minimum expected cell deaths and 
information loss is to model mortality at the level of each individual, not 
of the group. this approach is not available to users of population data 
sets, as only grouped death counts and exposures are generally available. 
however, this approach is well-suited to portfolios of pensioners and 
annuitants: not only is the exact age and gender known for each pen-
sioner, but also the exact date of death and a number of other relevant 
individual variables as well, including postcode, product type or member-
ship category. since the requirement for a minimum number of expected 
deaths vanishes in an individual model, this enables us to model an unlim-
ited number of risk factors simultaneously for any size of scheme. there 
are two approaches we can adopt for modelling mortality at the level of 
the individual: to estimate qx in a bernoulli model (usually as a GlM), or 
to estimate μx in a survival model.

Models of individual mortality: GLMs
actuaries are most familiar with the one-year mortality rate, denoted 1qx or 
just simply qx. this is the probability of a life aged exactly x dying before 
reaching age x+1. GlMs for individual mortality are typically based around 
the bernoulli model using qx (the bernoulli model is simply the binomial 
model with n=1). richards and Jones (2004) presented the results of such a 
generalised linear model for pensioner mortality in a large portfolio of 
annuitants. the model chosen was logistic regression, which was the best of 
a variety of choices of GlM. the basic idea behind logistic regression can be 
expressed as:

3 log q
q

xx

x1 −






= +α β

where qx is the probability that a life now aged x will die before reaching 
age x+1. the expression on the right is known in GlM terms as the linear 
predictor, as it is a linear combination of age and a constant. the function 
on the left is called the log-odds ratio, or logit. in GlM terms, any function-
which relates the mortality measure to the linear predictor like this is called 
the link function. equation 3 can be re-arranged to give a formula for qx: 

4 q x
xx = +

+ +
exp( )

exp( )
α β

α β1

which is a simplified version of the actuarial ‘law’ proposed by perks 
(1932). richards (2007) describes a number of mortality laws which can 
all be expressed in GlM terms (see table 4). in this table, Φ() is the dis-
tribution function of the N(0, 1) distribution, and Φ −1() is the inverse. 
With the possible exception of the reversed extreme-value law, any one of 
these models might be chosen to represent pensioner mortality, as illus-
trated in figure 1.

cutting edge longevity

 life & Pensions38

Age

Gompertz (1825): qx=exp(α+βx) Extreme value: qx=1–exp(–exp(α+βx))

Probit-Gombertz: qx=Φ(α+βx) 

Reversed extreme value:

qx=exp( -1
exp(α+βx)

)

Perks(1932): qx=

M
o

rt
al

it
y 

ra
te

Lo
g

 (
M

o
rt

al
it

y 
ra

te
)

Age

1+exp(α+βx)

exp(α+βx)

Figure 1. Five mortality laws for qx, shown on original 
scale (left panel) and on log scale (right panel)
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Figure 2. Survival function x−50p50 according to PMA00

The key point about the log-scale plot is that only the Gompertz mortality law 
has a constant proportionate increase in mortality with age, i.e. a straight line 
on the log scale. The other laws all demonstrate a slowing down in the 
increase of the mortality rate with age, the so-called late-life mortality 
deceleration. source: richards (2006). 

The lighter grey area shows the data used when modelling qx, while the 
darker blue area shows the extra data used when modelling the t-year survival 
probability, tpx. source: Longevitas Ltd, using cMiB data.

Table 4: Some actuarial mortality laws and their 
equivalence as a generalised linear model
Mortality law Form for qx Link name Link function

Gompertz (1825) exp(α+βx) logarithm log qx

Perks (1932, 
simplified)

exp( )
exp( )

α β
α β
+

+ +
x

x1

logit
log q

q
x

x1 −






Extreme value 1–exp(-exp(α+βx)) complementary 
log-log

log(–log(1–qx))

Reversed 
extreme value exp

exp( )
−

+






1
α βx

log-log log(–log qx)

Probit-Gompertz Φ(α+βx) probit Φ -1(qx)
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Models of individual mortality: survival models
an alternative measure to qx is the instantaneous hazard rate, known to 
actuaries as the force of mortality, μx, and defined as:

5
µ x t dt

xT t t dt
dt+ → +

=
∈ +[lim

Pr ( , ))
0

 

where Tx >_ 0 is a random variable representing the future lifetime of a life 
now aged x. for small dt, equation 5 is effectively saying:

6 µ x
dt xq
dt

≈

where dtqx is the probability of dying in the small interval of time dt.
actuaries working with longevity risk are naturally more focused on survival 
probabilities, rather than mortality per se. the t-year survival probability, 

tpx, is given by:

7
t x

H tp e= − ( )

where H(t)= 0
t

∫ μx+sds is called the integrated hazard function. equation 7 
therefore gives us a simple relationship between the rate of mortality, qx, and 
the force of mortality, μx:

8 q dsx x s= − −( )+∫1
0
1exp µ

as with qx, a functional form for the force of mortality can be used for pen-
sioner data. below is the Gompertz (1825) model:

9 µ α βx x= +exp( )

which can be written in a log-linear form:

10 log µ α βx x= +

the right-hand side of equation 10 is identical to the right-hand side of 
equation 3, so here we can explain how the individual models of mortality 
– both GlMs and survival models – differ from the group models. simply 
put, each life i has its own specific parameters which describe its own 
combination of risks, that is αi and βi instead of a group α and β. thus:

11 α αi ij j
j

m
z=

=
∑

1

β βi ij j
j

m
z=

=
∑

1

where there are m components (factors) to the overall risk, each αj and βj is a 
parameter estimating a particular risk component (αj) and its interaction 
with age (βj), and zij is a binary indicator variable taking the value 1 when life 
i belongs to the group with risk factor j and the value 0 otherwise. for exam-
ple, in a model with risk factors for both gender and smoker status:

12 α α α αi baseline i male male i smo smoz z= + +   , , ker keer

β β β βi baseline i male male i smo smoz z= + +   , , ker keer

note that the model is structured as measuring differences from a base-
line profile. in the model specified in equation 12, the baseline is a female 
non-smoker, while the model parameters measure male mortality as a 
departure from the female baseline, and smoker mortality is measured as 
a departure from the non-smoker baseline. the zi, male are zero-one indica-
tor variables for whether life i is male, and the zi, smoker are similar zero-one 
indicators for whether a life is a smoker.

by way of illustration, table 1 shows the results of an individual-level 
GlM with six risk factors: age, gender, lifestyle, duration since retire-
ment, region and pension size. there is no limit to the number of different 
risk factors which can be investigated when using individual-level models 
of mortality, whether this is done as a GlM or a survival model. this is 
the crucial advantage of models for individuals instead of groups.

Advantages of survival models
thus far we have seen that models for individual-level mortality are better-
suited to insured datasets than models of group mortality. We have also 
seen that such individual-level models can be either GlMs (for qx) or sur-
vival models (for μx). in this section we explain why survival models are 
usually preferable.

a full survey of models for actuarial use is given by Macdonald (1996a, 
1996b, 1996c), who also gives wider justification for using survival models 
for μx in preference to modelling qx. however, we will focus on pensioner 
mortality in this section. one common feature of pension schemes and 
annuity portfolios is the nature of the data. people enter the portfolio 
more or less constantly, and the exact date of entry is known, as is the 
exact date of death when it occurs. exact dates of birth are usually also 
known, as are gender, pension size and a number of other potentially 
useful pieces of information. thus, for each pensioner their survival from 
start to finish is usually known exactly. intuitively, we want to use all this 
data, not just part of it.

another common feature is that we are not so interested in pensioners’ 
mortality as much as their longevity. a more natural focal point is there-
fore not the rate of mortality, qx, or even the force of mortality, μx, but the 
survival function, tpx. We saw in equation 7 that there was a simple and 
direct relationship between μx and tpx for any real value t>0.

figure 2 shows the information contributing to a model of qx: a single 
age’s exposure and the deaths (if any) which are observed at that age. 

Table 5: Width of 95% confidence intervals relative to 
parameter estimates for a sample five-year data set
Model type Intercept

(α baseline )
Age
(β baseline )

Gender
(α male )

Age: Gender
(β male )

(a) GLM 0.153 0.206 1.073 1.388

(b) Survival 
model

0.038 0.053 0.203 0.239

(b) as % of (a) 25% 26% 19% 17%
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regardless of just how much observed data you might have for an indi-
vidual, only a single year’s exposure can actually be used in logistic 
regression (or any of the other individual-level GlMs). this is because if 

1qx can be transformed into a linear function (as in equation 3), then 2qx 
and other multi-year mortality probabilities cannot. the alternative sug-
gestion – simply putting each individual into the data set several times for 
qx, qx+1,... etc, will violate the crucial independence assumption on which 
the model is based and produce unreliable results.

figure 2 also shows the information contributing to a model of tpx, which 
clearly benefits from both greater exposed-to-risk and a larger number of 
deaths. thus, if we can switch from modelling mortality rates to model-
ling survival, we can use all available data and thus boost the overall power 
of the model. the result is not only efficient use of all available data, but 
also better estimation and smaller standard errors.

the power of the individual survival model manifests itself in a number 
of ways relative to the individual GlM, as shown in table 5:

(i) the standard errors for a survival model are usually a fraction of their 
GlM equivalent, thus yielding more-accurate parameter estimation. 
table 5 shows the results of a GlM and survival model applied to the 
same data set, showing the smaller relative confidence intervals (and 
therefore greater accuracy) of the survival model.

(ii) this greater accuracy enables the user to find mortality differentials 

(and thus risk factors for pricing and reserving) which would otherwise be 
hidden from a GlM.

(iii) the ‘critical mass’ of data required for a survival model is measured 
in terms of life-years of exposure overall, not lives in a single year. While 
a few insurers will have enough data to work with GlMs, survival analy-
sis puts the same power within reach of many more than just the very 
largest insurers.

(iv) the greater stability of estimates from using data spanning different 
calendar years, thus minimising the impact of period effects.

Conclusions
for insured data sets, modelling mortality at the level of the individual is 
preferable to modelling the mortality of groups. both GlMs and survival 
models are capable of individual-level modelling, but GlMs do not make 
efficient use of all the data usually available and require larger data sets to 
achieve the same results. in contrast, survival models for tpx and μx make 
full use of every piece of information, and permit more stable estimates 
than the equivalent GlM.
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