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Cutting edge: Ratings validation

Various rating methodologies and credit risk modelling approaches
have been developed in the past few years. Furthermore, in the sec-
ond consultative document of its new capital adequacy framework,

the Basel Committee on Banking Supervision (2001) has announced that
an internal ratings-based approach could soon form the basis for setting
capital charges with respect to credit risk. This is forcing banks and su-
pervisors to develop statistical tools to evaluate the quality of internal rat-
ing models. The importance of sound validation techniques for rating
systems stems from the fact that rating models of poor quality could lead
to sub-optimal capital allocation. Therefore, the Basel Committee (2000)
has emphasised that the field of model validation is one of the major chal-
lenges for financial institutions and supervisors. 

The most popular validation technique currently used in practice is the
cumulative accuracy profile (CAP) and its summary statistic, the accuracy
ratio. A detailed explanation of this method can be found in Sobehart,
Keenan & Stein (2000). The receiver operating characteristic (ROC) is a
similar concept to the CAP. This method has its origin in signal detection
theory, psychology and, especially, in medicine (see, for example, Hanley
& McNeil, 1982).1 Sobehart & Keenan (2001) explain how to use this con-
cept for validating internal rating models. In their article, they concentrate
on the qualitative features of ROC curves such as calculation and inter-
pretation. The main conclusion of their article is that the size of the area
below an ROC curve is an indicator of the quality of a rating model.

A single number, such as the accuracy ratio or the area below the ROC
curve, contains little information from a statistical point of view. To get a
feeling for the quality of a rating system, it is desirable to state confidence
intervals. It is also insufficient to compare two rating systems that are cal-
ibrated on the same data set by just comparing two numbers only. A rig-
orous statistical test is the only way to obtain a sound decision about the
superiority of one rating model over the other.

This article consists of four parts. In the first, to keep the article self-
contained, we briefly review the concepts of the CAP and the ROC. For
both concepts it is possible to summarise the information concerning the
quality of a rating system with a single number, namely with the accura-

cy ratio and the area below the ROC curve. We will show that the accu-
racy ratio is just a linear transformation of the area below the ROC curve.
In the second part, we discuss a simple method to calculate confidence
intervals for the area under the ROC curve. Because of the relation be-
tween the accuracy ratio and the area below the ROC curve, this method
is also applicable to the accuracy ratio. Compared with bootstrap analy-
sis, the method is much faster. In the third part, we discuss a test to com-
pare the area below the ROC curve of two rating models that are validated
on the same data set. In the final part, we apply these concepts to real
rating models.

Both this test and the method to calculate confidence intervals rely on
asymptotic normality. The reliability of these methods is not guaranteed
in the case of a validation sample containing only a small number of de-
faults. From our experience, we find that as a rule of thumb around 50
defaults in the validation sample are enough for the asymptotic proper-
ties to hold. If the validation sample contains fewer than 50 defaults, the
results should be interpreted with care or the use of alternative methods
should be considered.

Throughout this article, we will assume rating systems that produce con-
tinuous rating scores. This is mainly because our examples are based on
logit models and discriminant analyses that fulfil this assumption. Howev-
er, all the results apply also to rating scores with a finite number of grades.
We will not capture this case in great detail but we will give comments on
modifications of the results for the continuous case where necessary.

Cumulative accuracy profiles
Consider an arbitrary rating model that produces a continuous rating score.
The score under consideration could be a rating score such as Altman’s Z-
score (1968) or a score obtained from a logit model or from any other ap-
proach. A high rating score is usually an indicator of a low default
probability. To obtain the CAP curve, all debtors are first ordered by their
respective scores from riskiest to safest, that is, from the debtor with the
lowest score to the debtor with the highest score. For a given fraction x of
the total number of debtors, the CAP curve is constructed by calculating
the percentage d(x) of the defaulters whose rating scores are equal to or
lower than the maximum score of fraction x. This is done for x ranging
from 0% to 100%. Figure 1 illustrates CAP curves.

A perfect rating model will assign the lowest scores to the defaulters. In
this case, the CAP is increasing linearly and then staying at one. For a ran-
dom model without any discriminative power, the fraction x of all debtors
with the lowest rating scores will contain x% of all defaulters. Real rating
systems will be somewhere in between these two extremes. The quality of
a rating system is measured by the accuracy ratio AR. It is defined as the
ratio of the area aR between the CAP of the rating model being validated
and the CAP of the random model, and the area aP between the CAP of
the perfect rating model and the CAP of the random model, that is:

Thus, the rating method is the better the closer AR is to one.
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Testing rating accuracy
As Basel II approaches the implementation stage, regulators have identified internal ratings
validation as a key challenge for banks using this approach. Here, Bernd Engelmann, Evelyn
Hayden and Dirk Tasche build upon previous research showing how to use the so-called
receiver operator characteristic method in ratings validation, testing their results on a real
database of small and medium-sized enterprise loans
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1. Cumulative accuracy profiles

1 An interesting overview of the variety of possible applications of ROC curves is given in
Swets (1988)
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Receiver operating characteristic
We also briefly explain the concept of an ROC curve. The construction of
an ROC curve is illustrated in figure 2, showing possible distributions of
rating scores for defaulting and non-defaulting debtors. For a perfect rat-
ing model, the left distribution and the right distribution in figure 2 would
be separate. For real rating systems, perfect discrimination in general is
not possible. Both distributions will overlap, as illustrated in figure 2.

Assume someone has to find out from the rating scores which debtors
will survive during the next period and which debtors will default. One
possibility for the decision-maker would be to introduce a cutoff value C
as in figure 2, and to classify each debtor with a rating score lower than
C as a potential defaulter and each debtor with a rating score higher than
C as a non-defaulter. Then four decision results would be possible. If the
rating score is below the cutoff value C and the debtor defaults subse-
quently, the decision was correct. Otherwise the decision-maker wrongly
classified a non-defaulter as a defaulter. If the rating score is above the
cutoff value and the debtor does not default, the classification was cor-
rect. Otherwise, a defaulter was incorrectly assigned to the non-defaulters
group.

Using the notation of Sobehart & Keenan (2001), we define the hit rate
HR(C) as:

where H(C) (equal to the light area in figure 2) is the number of default-
ers predicted correctly with the cutoff value C, and ND is the total num-
ber of defaulters in the sample. The false alarm rate FAR(C) (equal to the
dark area in figure 2) is defined as:

where F(C) is the number of false alarms, that is, the number of non-de-
faulters that were classified incorrectly as defaulters by using the cutoff
value C. The total number of non-defaulters in the sample is denoted by
NND. The ROC curve is constructed as follows. For all cutoff values C that
are contained in the range of the rating scores the quantities HR(C) and
FAR(C) are calculated. The ROC curve is a plot of HR(C) versus FAR(C).
This is shown in figure 3.

A rating model’s performance is better the steeper the ROC curve is at
the left end and the closer the ROC curve’s position is to the point (0, 1).
Similarly, the larger the area below the ROC curve, the better the model.
We denote this area by A. It can be calculated as:

The area A is 0.5 for a random model without discriminative power and

it is 1.0 for a perfect model. It is between 0.5 and 1.0 for any reasonable
rating model in practice.

Connection between ROC curves and CAP curves
We prove a relation between the accuracy ratio and the area under the
ROC curve (A) in order to demonstrate that both measures are equivalent.
By a simple calculation, we get for the area aP between the CAP of the
perfect rating model and the CAP of the random model:

We introduce some additional notation. If we randomly draw a debtor from
the total sample of debtors, the resulting score is described by a random
variable ST. If the debtor is drawn randomly from the sample of defaulters
only, the corresponding random variable is denoted by SD, and if the debtor
is drawn from the sample of non-defaulters only, the random variable is
denoted by SND. Note that HR(C) = P(SD < C) and FAR(C) = P(SND < C).

To calculate the area aR between the CAP of the rating model being
validated and the CAP of the random model, we need the cumulative dis-
tribution function P(ST < C), where ST is the distribution of the rating scores
in the total population of all debtors. In terms of SD and SND, the cumu-
lative distribution function P(ST < C) can be expressed as:

Since we assumed that the distributions of SD and SND are continuous, we
have P(SD = C) = P(SND = C) = 0 for all attainable scores C.

Using this, we find for the area aR:

With these expressions for aP and aR, the accuracy ratio can be calculated
as:

This means that the accuracy ratio can be calculated directly from the area
below the ROC curve and vice versa.2 Hence, both summary statistics con-
tain the same information.
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Calculation of confidence intervals for A
Here, we discuss a simple method of calculating confidence intervals for
A, the area below the ROC curve. The same reasoning applies to the ac-
curacy ratio by means of the relation proven above. The results present-
ed are based on Bamber (1975). Derivations and proofs of the results we
use in this article, as well as a more complete discussion of the limitations
of these approaches and their assumptions, are given there. We start with
a probabilistic interpretation of A.

Consider the following experiment. Two debtors are drawn at random,
the first from the distribution of defaulters, the second from the distribution
of non-defaulters. The scores of the defaulter and the non-defaulter deter-
mined in this way can be interpreted as realisations of the two independent
continuous random variables SD and SND. Assume someone has to decide
which of the debtors is the defaulter. A rational decision-maker might sup-
pose that the defaulter is the debtor with the lower rating score. The prob-
ability that he is right is equal to P(SD < SND). A simple calculation shows
that this probability is exactly equal to the area below the ROC curve A.

This interpretation relates to the statistic of the U-test of Mann-Whitney
(1947).3 If we draw a defaulter with score sD from SD and a non-defaulter
with score sND from SND and define uD, ND as:

then the test statistic Û of Mann-Whitney is defined as:

where the sum is over all pairs of defaulters and non-defaulters (D, ND)
in the sample.

Observe that Û is an unbiased estimator for P(SD < SND), that is:

Furthermore, we find that the area Â below the ROC curve calculated from
the empirical data is equal to Û . For the variance σ2

Û of Û we find the
unbiased estimator σ̂ 2

Û as4:

where P̂ D, D, ND and P̂ ND, ND, D are estimators for the expressions PD, D, ND
and PND, ND, D which are defined as:

The quantities SD, 1, SD, 2 are independent observations randomly sam-
pled from SD, and SND, 1, SND, 2 are independent observations randomly
sampled from SND. This unbiased estimator σ̂2

Û is implemented in stan-
dard statistical software packages.5

For ND, NND → ∞ it is known that (A – Û )/σ̂ Û is asymptotically nor-
mally distributed with mean zero and standard deviation one. So confidence
intervals at confidence level α can be calculated for Û using the relation:

where Φ denotes the cumulative distribution function of the standard nor-
mal distribution. Our analysis below indicates that the number of defaults
should be at least around 50 in order to guarantee that the above formu-
la is a good approximation. There is no clear rule for which values of Û

the asymptotic normality of Û is a valid approximation, because Û can
solely take values in the interval [0, 1]. If Û is only a few (two, three or
four) standard deviations away from one, it is clear that the normal ap-
proximation is problematic.6 However, as illustrated in our examples below,
even in this situation the normal approximation can lead to reasonable re-
sults. Nevertheless, one should keep in mind this potential problem and
interpret the results of this method with care in these situations.

Comparing the areas below the ROC curves for two rating models
This part of the article is based on the work of DeLong, DeLong & Clarke-
Pearson (1988). The aim of their work is to provide a test for the differ-
ence between the areas A1 and A2 below the ROC curves of two different
rating models, 1 and 2. From the last section we know how to calculate
the variance σ2

Û i for an estimator Û i of Ai. For the covariance σ̂ 2
Û 1Û 2 be-

tween the estimators Û 1 and Û 2 of A1 and A2 we find7:

where P
~12
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~12

D, D, ND and P
~12

ND, ND, D are estimators for P12
D, D, ND, ND,

P12
D, D, ND and P12

ND, ND, D, which are defined as8:

The quantities Si
D, Si

D, 1 and Si
D, 2 are independent draws from the sam-

ple of defaulters. The upper index i indicates whether the score of the rat-
ing model 1 or the score of the rating model 2 has to be taken. The meaning
of Si

ND, Si
ND, 1 and Si

ND, 2 is analogous.
To carry out the test for the difference between the two rating methods

(where the null hypothesis is equality of both areas below the ROC curve),
we have to evaluate the test statistic T, which is defined as:
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2 This relation is valid for rating systems with a finite number of grades, too
3 This U-test of Mann-Whitney can be used to assess if a rating system has discriminative
power at all by testing the null hypothesis P(SD < SND) = 0.5. It can also be applied to
calculate confidence intervals, which is the application we discuss here
4 In Bamber (1975), several upper bounds for the variance are given. These upper bounds
are easy to evaluate and can be used to derive conservative estimates of confidence intervals.
However, usually they are not helpful in determining the true confidence intervals because
they rely on specific distributional assumptions that are, in general, not fulfilled by the data
5 For rating systems with a finite number of grades only, ûD, ND has to be defined as 0.5
for sD = sND. In the formula for the unbiased estimator of σ̂ 2

Û, the first term in the brackets
(‘1’) has to be replaced by P(SD ≠ SND), which is equal to one in the continuous case
6 Several methods for the computation of confidence intervals without relying on the
assumption of asymptotic normality are known, which lead in general to very
conservative confidence intervals. An overview of these methods is given in Bamber
(1975). One could rely on these methods if the normal approximation is questionable as
in the case of very few defaults in the validation sample
7 This expression is also correct for rating systems with a finite number of rating categories
8 The expressions given in DeLong, DeLong & Clarke-Pearson (1988) look very different
from this expression. However, it can be shown that both are equivalent. We used this
expression to be consistent with the notation of the previous section
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This test statistic is asymptotically χ2(1)-distributed with one degree of
freedom.

Application to real rating systems
Here, we apply the concepts introduced in the previous two sections using
a Bundesbank database9 containing about 325,000 balance sheets for the
years 1987–1999. The database includes about 3,000 defaults where de-
fault was defined as legal insolvency. To produce rating scores, we ap-
plied Altman’s Z-score and the score of a logit model that we calibrated
on the data from 1987–1993. To be precise, the formula of Altman’s Z-
score is:

Z-score = 0.717 × working capital/assets + 0.847 × 
retained earnings/assets + 3.107 × EBIT/assets + 0.420 × 

net worth/liabilities + 0.998 × sales/assets

while the calibration for the logit model yielded:

Logit score10 = 5.65 – 0.98 × liabilities/assets – 1.37 × 
bank debt/assets + 2.42 × cash/current liabilities + 2.08 ×

cashflow/(liabilities – advances) – 0.81 × current assets/net sales –
1.49 × current liabilities/assets – 5.26 × accounts payable/net

assets + 0.19 × net sales/assets + 0.28 × (net sales – material
costs)/personnel costs + 8.21 × ordinary business income/assets –

0.17 × net sales/net sales one year ago

To calculate the ROC curves, Â , and confidence intervals for Â for
both rating models, we used the data from 1994–1999, which contained
about 200,000 balance sheets and about 825 defaults. In that way we per-
formed an out-of-sample and out-of-time validation. The ROC curves for
both rating methods are given in figure 4.

Furthermore, we compared the approach based on asymptotic nor-
mality to bootstrapping11 to see how well the assumption of asymptot-
ic normality is justified. Additionally, we draw three sub-portfolios
randomly from our large portfolio to assess how the approach based on
asymptotic normality works for smaller portfolios. Sub-portfolio 1 con-
sists of 50 defaulters and 450 non-defaulters, sub-portfolio 2 contains
20 defaulters and 480 non-defaulters, and sub-portfolio 3 contains 10
defaulters and 490 non-defaulters. The results are summarised in tables
A, B, C and D.

We see from tables A and B, where we had a sufficiently large number
of defaults in our validation sample, that the confidence intervals based
on asymptotic normality are close to the confidence intervals that result-
ed from bootstrapping. In tables C and D, where the number of defaults

Â σσ̂Â 95% confidence 95% confidence 99% confidence 99% confidence 
interval (normal) interval (bootstrap) interval (normal) interval (bootstrap)

Z-score 0.72 0.007 [0.7061, 0.7336] [0.7059, 0.7336] [0.7018, 0.7378] [0.7014, 0.7375]
Logit score 0.84 0.006 [0.8278, 0.8526] [0.8294, 0.8507] [0.8248, 0.8558] [0.8258, 0.8542]

A. Results for Â , σσ̂ Â , 95% and 99% confidence intervals for the total portfolio

Â σσ̂Â 95% confidence 95% confidence 99% confidence 99% confidence 
interval (normal) interval (bootstrap) interval (normal) interval (bootstrap)

Z-score 0.704 0.036 [0.6348, 0.7741] [0.6332, 0.7707] [0.6131, 0.7959] [0.6083, 0.7892]
Logit score 0.777 0.037 [0.7046, 0.8485] [0.7032, 0.8445] [0.6820, 0.8711] [0.6768, 0.8638]

B. Results for Â , σσ̂ Â , 95% and 99% confidence intervals for sub-portfolio 1 (50 defaults)

Â σσ̂Â 95% confidence 95% confidence 99% confidence 99% confidence 
interval (normal) interval (bootstrap) interval (normal) interval (bootstrap)

Z-score 0.696 0.048 [0.6018, 0.7899] [0.6021, 0.7868] [0.5729, 0.8187] [0.5769, 0.8131]
Logit score 0.801 0.050 [0.7031, 0.8980] [0.6953, 0.8861] [0.6733, 0.9277] [0.6578, 0.9050]

C. Results for Â , σσ̂ Â , 95% and 99% confidence intervals for sub-portfolio 2 (20 defaults)

Â σσ̂Â 95% confidence 95% confidence 99% confidence 99% confidence 
interval (normal) interval (bootstrap) interval (normal) interval (bootstrap)

Z-score 0.697 0.098 [0.5041, 0.8894] [0.5004, 0.8651] [0.4436, 0.9499] [0.4367, 0.9004]
Logit score 0.855 0.063 [0.7317, 0.9777] [0.7220, 0.9520] [0.6931, 1.0000] [0.6716, 0.9680]

D. Results for Â , σσ̂ Â , 95% and 99% confidence intervals for sub-portfolio 1 (10 defaults)

Â σσ̂Â 95% confidence 95% confidence 99% confidence 99% confidence 
interval (normal) interval (bootstrap) interval (normal) interval (bootstrap)

0.8116 0.0251 [0.7625, 0.8608] [0.7603, 0.8576] [0.7471, 0.8762] [0.7434, 0.8702]

E. Results for Â , σσ̂ Â , 95% and 99% confidence intervals for a rating system with seven categories
(50 defaults)

9 This database consists only of small and medium-size enterprises. We have excluded all
companies listed on stock exchanges from the database
10 As the empirical relationship between the ratio net sales/net sales one year ago and its
log odds were found to be non-linear, this variable was transformed using the approach
described in Falkenstein, Boral & Carty (2000)
11 The number of simulations was 25,000 to obtain the confidence intervals based on
bootstrapping in tables A, B, C, D and E
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is small, we find that Â is in three cases only three or four standard devi-
ations away from one. In these cases, it is not clear how well the normal
approximation is justified. We see that the boundaries of the confidence
intervals differ by about 2–5 percentage points. However, for these cases
with very few defaults in the validation sample, the approximation does
not lead to completely misleading results. The central limit theorem, which
is the basis of this approximation, appears to be very robust. Our exam-
ples provide clear evidence that asymptotic normality can be assumed even
for small portfolios and that this concept is applicable to a wide range of
practical situations. The main advantage of confidence intervals based on
asymptotic normality compared with bootstrapping is the considerably
lower computational time to obtain them. It took less than one minute to
obtain the confidence interval for the large portfolio in table A using as-
ymptotic normality, while the application of bootstrapping can take sev-
eral hours for portfolios of realistic size.

To make clear that our analysis is not restricted to rating systems with
continuous scores, we want to discuss the calculation of confidence in-
tervals for rating systems with a finite number of grades in some detail.
Most commercial banks assign their corporate clients to a small number
of rating categories. With only a few rating grades available, one gets a
very coarse ROC curve because one has to construct it from a small num-
ber of points. However, for the calculation of confidence intervals, it is
not essential that the rating score is continuous, as the only driver for
the central limit theorem to hold is the number of defaults in the vali-
dation sample.

To illustrate our argument with an example, we generate a rating sys-
tem with seven categories. Each debtor is assigned a score value of one,
two, three, four, five, six or seven. We randomly select 5,000 debtors
from our sample, including 50 defaulters. We use the logit score to dis-
tribute them among the rating categories (each category contains ap-
proximately the same number of debtors). However, this distribution of
debtors on the rating categories could also have been achieved by human
judgement. The only information we use is that a debtor has a score be-
tween one and seven, and whether he is a defaulter or not. This is suf-
ficient to apply the methods presented in our paper. Table E confirms
that this method of calculating confidence intervals can be applied in
very general situations.

Finally, we apply the test for the difference of two rating systems to the
examples in tables A, B, C and D. Again, the results for the two small port-
folios have to be interpreted with care since the number of defaults in
these examples is rather small. The results are summarised in table F.

Not surprisingly, for the total portfolio we find that the difference of
both rating methods is highly significant. In all other cases, there is weak
evidence that both models are different. The differences in the results
for sub-portfolio 2 and sub-portfolio 3 can be explained by the estimate
of the correlation between A1 and A2. For sub-portfolio 2 this correla-
tion is 0.35 while for sub-portfolio 3 it is 0.80. This explains why the p-
value for sub-portfolio 3 is much lower than for sub-portfolio 2 in spite
of the fact that the confidence intervals in both cases are overlapping
on a rather large range.

Conclusion
By demonstrating the correspondence of the area A under the ROC curve
and the accuracy ratio, we have shown that these summary statistics of the
CAP and the ROC are equivalent. Furthermore, this result enables us to
use a simple analytical method, based on Bamber (1975), to obtain confi-
dence intervals for these statistics. Additionally, by means of a methodol-
ogy introduced by DeLong, DeLong & Clarke-Pearson (1988), we have a
test at our disposal for comparing two different rating methods being val-
idated on the same data set. Even though these methods rely on asymp-
totic normality, which can be questionable in practice, in the real data
examples we have demonstrated that they can be reliable also for small-
er portfolios. Although bootstrap methods appear to be more generally ro-
bust, the approach that we discuss here is computationally faster and
provides good approximations in some cases. ■
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Portfolio χ2(1) p-value
Total portfolio 331.14 < 0.0001
Sub-portfolio 1 5.87 0.0154
Sub-portfolio 2 3.53 0.0602
Sub-portfolio 3 6.96 0.0083

F. Results of the test for the difference of the
areas below the ROC curve of the logit model
and the Z-score
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