
F ast pricing and calculating hedging parameters are still a chal-
lenge in the framework of the Libor market model (LMM), 
which has become the fundamental pricing model in the 

fixed-income environment. Traditionally, for fixed-income securities, 
Greeks are calculated by the so-called bump and revalue method: 
each initial forward rate is perturbed by a basis-point shift and then 
the security is valued again. Besides the simplicity, there is no further 
advantage. The LMM is usually implemented with Monte Carlo 
methods and this can be rather slow, especially using the perturba-
tion described before. The simulation procedure in the LMM is done 
in a forward measure and so the natural way to calculate Greeks is to 
do them on the fly. Giles & Glasserman (2006) have shown that 
under specific circumstances, their adjoint method can be suitable to 
get the Greeks a lot faster and save a considerable amount of compu-
tation time.

The rest of this article is structured as follows. We describe the 
dynamics of the LMM and fix notations. We review the basic for-
ward calculations of pathwise Greeks (delta and vega) and then 
describe the fundamental principles of the adjoint method, both for 
European-style derivatives only. Next, we describe how the usual 
forward framework can be extended to value Bermudan options: 
after a forward procedure we need to work backwards to calculate 
the optimal exercise times. Based on this idea, we develop the mod-
ifications necessary for the adjoint method. Numerical applications 
demonstrate the extended adjoint method. Interestingly, both 
adjoint extensions are based on the originally developed pathwise 
forward method.

LMM and its implementation
We consider the basic assumptions of the LMM of Brace, Gatarek 
& Musiela (1997). The LMM consists of M assets, namely M bonds. 
For these bonds, a set of M maturities {Ti}

M
i=1 is given with T0 := 0 < 

T1 < ... < TM, which are referred to as the tenor structure, and the 
maturity of the ith bond is Ti. The horizon of the LMM is defined 

as the maturity TM–1. The time steps di := Ti+1 – Ti for i = 0, ... , M – 1 
are referred to as the tenor distances.

Jamshidian (1997) developed an approach to model forward 
Libors with respect to the spot measure. Let L

~
i(t) denote the for-

ward Libor fixed at time t ≤ Ti for the interval [Ti, Ti+1) with i = 1, 
... , M – 1. In addition, we assume each forward volatility si(t) (d-
dimensional) to be deterministic. For practical purposes, it often 
suffices to restrict the volatility dependence on time to piecewise 
constant functions that change value only at the Ti. Further, we 
define h(t) to describe the index of the next tenor date after t. The 
arbitrage-free dynamics of the forward Libors under the spot 
measure is governed by the stochastic differential equation 
(SDE):

	

d%Li t( )
%Li t( ) = µ i t, %L t( )( )dt + σ i

T t( )dW t( ),

t ∈ 0,Ti[ ], i = 1,...,M − 1 	

(1)

where W is a d-dimensional standard Brownian motion under the 
spot measure and the drift is given by:

	
µ i t, %L t( )( ) := δ j

%L j t( )σ i
T t( )σ j t( )

1+ δ j
%L j t( )j=η t( )

i

∑

To simulate the forward Libors, we fix a time grid 0 = t0 < t1 < ... 
< tN = TM′ with time steps hn := tn+1 – tn for n = 0, ... , N – 1, where M′ 
< M and {T0, ... , TM′} ⊆ {t0, ... , tN}. Using Itô’s lemma and the Euler 
scheme applied to the logarithms of the forward Libors yields:

	

Li n + 1( )

= Li n( )exp µ i n( ) − 1
2

σ i n( ) 2




hn + hnσ i

T n( )Z n + 1( )





n = 0,...,N − 1, i = η n( ),...,M − 1 	

(2)
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with new notations Li(n) := Li(tn), mi(n) := mi (tn, L(tn)), si(n) := si(tn) 
and h(n) := h(tn), where Z(1), ... , Z(N) are independent standard 
normal random vectors in Rd. For efficiency, we calculate first:

	
Si n( ) :=

δ j L j n( )σ j n( )
1+ δ j L j n( )j=η n( )

i

∑ , i = η n( ),...,M − 1

and then calculate mi(n) = sT
i(n)Si(n), hence the total computational 

cost is O(M) per time step. Furthermore, we use the convention 
that Li(n + 1) = Li(n) if i < h(n).

More details on how to simulate the LMM under the spot meas-
ure can be found in Glasserman (2004), section 3.7.

Next, we consider the expected value of a discounted payout 
g(L

~
(TM ′)) of an interest rate derivative in LMM, where L

~
(t) is d-

dimensional and satisfies the SDE (1). The simulated form is 
denoted as g(L(N)), and L(N) is given through the equation (2).
We can write ∂g(L(N))/∂L(0) for the vector of deltas of g(L(N)) 
and write also ∂g(L(N))/∂θ for the vega of g(L(N)), where θ 
denotes a parameter of the forward volatilities. A sufficient condi-
tion for the correctness of the pathwise estimates of the deltas 
and vegas is that the discounted payout function g is smooth 
enough.

Forward method: pathwise deltas and vegas
Glasserman & Zhao (1999) developed the application of the for-
ward method to estimate the deltas and vegas. Based on their nota-
tion, we recap the estimation of deltas. Let D(n) := ∂L(n)/∂L(0) ∈ 
RM × M:

	
∆ ij n( ) := ∂Li n( )

∂L j 0( ) , n = 0,...,N , i = 0,...,M − 1, j = 0,..., i

We thus arrive at the forward estimative formula of the vector of 
the deltas:

	

∆ g L N( )( )( )
:=

∂g L N( )( )
∂L 0( ) =

∂g L N( )( )
∂L N( )

∂L N( )
∂L 0( ) =

∂g L N( )( )
∂L N( ) ∆ N( )

	

(3)

To implement D(N) accurately, we calculate the partial derivatives 
with respect to the vector L(0) on both sides of the equation (2). So 
we obtain the recursion Dij(n + 1) = Dij(n) for i < h(n) and i ≥ h(n):

	

∆ ij n + 1( )

=
L n + 1( )
Li n( ) ∆ ij n( ) + Li n + 1( )hnσ i

T n( )
δ kσ k n( )∆ kj n( )
1+ δ k Lk n( )( )2k=η n( )

i

∑
	

(4)

with the initial matrix D(0) = IM. The computational cost per recur-
sive step of implementing (4) is O(M2) for a fixed index i, since there 
is an O(M) cost in computing the summations for each j. The recur-
sion (4) can also be written as:

	 ∆ n + 1( ) = D n( )∆ n( ), D n( ) ∈RM ×M
	

(5)

where for i = j:

	

Dii n( ) :=
1 i < η n( )
Li n+1( )
Li n( ) + Li n+1( ) σ i n( ) 2 δ ihn

1+δ i Li n( )( )2
i ≥ η n( )







and for i ≠ j:

	

Dij n( ) :=
Li n+1( )σ i

T n( )σ j n( )δ j hn

1+δ j L j n( )( )2
i > j ≥ η n( )

0 otherwise







Next, we address the estimation of vegas through the pathwise 
forward method. Let Θ(n) := ∂L(n)/∂θ ∈ RM. We then calculate the 
vegas by means of:

	

Θ g L N( )( )( ) := ∂g L N( )( )
∂θ

=
∂g L N( )( )
∂L N( )

∂L N( )
∂θ

=
∂g L N( )( )
∂L N( ) Θ N( )

	

(6)

where Θ(N) is computed by the recursion:

	 Θ n + 1( ) = D n( )Θ n( ) + B n( ) 	
(7)

and the initialisation Θ(0) = 0. To be specific, B(n) is given as:

	

Bi n( ) = Li n + 1( )hnσ i
T n( ) δ k Lk n( )

1+ δ k Lk n( )k=η n( )

i

∑ ∂σ k n( )
∂θ

+Li n + 1( ) hnSiT n( ) − hnσ i
T n( ) + hn Z

T n + 1( )( ) ∂σ i n( )
∂θ 	

(8)

for i = h(n), ... , M – 1 and Bi(n) = 0 otherwise.

Adjoint method: pathwise deltas and vegas
Giles & Glasserman (2006) introduced an alternative to the forward 
pathwise approach and called it the adjoint method. To estimate the 
deltas and vegas they calculate the Greeks in a backward direction. 
The idea for the adjoint deltas can be shown as follows:

	

∆ g L N( )( )( ) =
3( ) ∂g L N( )( )

∂L N( ) ∆ N( )

=
5( ) ∂g L N( )( )

∂L N( ) D N − 1( )D N − 2( )LD 0( )∆ 0( )

=:V T 0( )
	

(9)

where V(0) can be calculated through the following backward 
recursion:

	

V n( ) = D T n( )V n + 1( ), V N( ) = ∂g L N( )( )
∂L N( )











T

	
(10)

and we note that D(0) = IM.
The precise formula to compute V(0) after initialising V(N) is 

therefore:

	

Vi n( ) = Li n + 1( )
Li n( ) Vi n + 1( )

+
σ i

T n( )δ ihn
1+ δ i Li n( )( )2

L j
j= i

M −1

∑ n + 1( )Vj n + 1( )σ j n( )
	

(11)

for i ≥ h(n) and Vi(n) = Vi(n + 1) for i < h(n). The summation can 
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be calculated at a cost O(M), hence for a fixed index i there is an 
O(M) cost in updating each recursive step of (11). Similarly, we 
can write the principle of the adjoint method to estimate the 
vegas:

	

Θ g L N( )( )( ) =
6( ) ∂g L N( )( )

∂L N( ) Θ N( )

=
7( ) ∂g L N( )( )

∂L N( ) B N − 1( ) + D N − 1( )( B N − 2( ) + D N − 1( )L

+L+ D N − 1( )D N − 2( )LD 1( )B 0( ))

=
10( )
V T N( )B N − 1( ) + V T N − 1( )B N − 2( ) +L+ V T 1( )B 0( )

= V T

n=0

N −1

∑ n + 1( )B n( )

From the analysis above, we conclude that the strength of the 
adjoint method is based on a vector-vector recursion compared with 
the vector-matrix recursion of the forward method. Now we try to 
develop this idea for Bermudan-style derivatives.

Deltas and vegas of Bermuda swaptions
A Bermudan swaption refers to a modified American style of swap-
tion. It grants the holder the right to enter into the underlying 
instrument, for instance a fixed-for-floating interest rate swap, at 
each prearranged exercise date in a schedule, provided that the 
holder has not exercised the right at any previous time.

Let us define a Bermudan swaption formally. An H × M Bermu-
dan swaption is defined on the tenor structure 0 = T0 < T1 < ... < TM 
with tenor distances dn := Tn+1 – Tn for n = 0, ... , M – 1. It can enter 
the underlying instrument on any of the dates {Tn}

M
n=H

–1. If the Ber-
mudan swaption is exercised at time Tr ≥ TH, that is, Tr is the opti-
mal exercise time, then the underlying instrument is a stream of 
payments {Xn}

M
n=r

–1. Because the underlying instrument is actually a 
fixed-for-floating interest rate swap, under the LMM these pay-
ments are:

	
Xn := φNδn Ln n( ) − R( )

for n = r, ... , M – 1, where R is the fixed rate and N is the nominal 
value. In addition, it is a payer swap if φ = 1 and a receiver swap if φ 
= –1, which respectively correspond to the payer and receiver Ber-
mudan swaption. Furthermore, notice that each Xn is determined at 
time Tn, but the payment is made at time Tn+1. Hence the discount 
factor of the payment Xn at time Tn+1 is:

	
PVn+1 :=

1
1+ δ i Li i( )i=0

n

∏

Then the expected value of the H × M Bermudan swaption in the 
LMM under the spot measure at time T0 is given as:

	
PBS 0( ) := E PVn+1Xn

n=r

M −1

∑




 	

(12)

The essential problem in valuing a Bermudan swaption via the 
Monte Carlo method is according to (12) the determination of 
the optimal exercise time in each simulated path, where the exer-

cise value is maximised. A general approach to choosing the opti-
mal exercise time and value of a Bermudan swaption is the so-
called least-squares Monte Carlo (LSM) algorithm, which is 
addressed in Longstaff & Schwartz (2001). They propose the fol-
lowing procedure: define regression variables for each possible 
exercise time and then regress the continuation value and com-
pare them with the exercise value in a backward simulation. We 
consider only a single explanatory variable, the swap net present 
value. Three regression functions were employed, a constant, a 
linear and a quadratic term.

Adjoint estimation of deltas and vegas
The pathwise deltas of an H × M Bermudan swaption can be 
approximated as follows:

	
∆ PBS 0( )( ) ≈ E ∆ PVn+1Xn( )

n=r

M −1

∑




 	

(13)

where r is an estimate of the optimal exercise time index calculated 
during the LSM algorithm. This elegant formula was developed by 
Piterbarg (2004). It allows the deltas of Bermudan swaptions 
through the Monte Carlo method to be determined.

Now we develop a new fast Monte Carlo algorithm to estimate 
the deltas and vegas of Bermudan swaptions, which is based on the 
formula (13) and the adjoint method described above. First, we 
suppose V T

n(Nn) := ∂(PVn+1Xn)/∂L(n) 1 for n = r, ... , M – 1. Then we 
define a new vector V for further analysis. Let:

	
V NM −1( ) := VM −1 NM −1( )

and the following backward recursion for m = NM–1–1, ... , 0:

V m( )

:=

D T Nl( )V Nl + 1( ) + Vl Nl( ) m ∈ Nl l = r,...,M − 2{ }
D T m( )LD T Nr − 1( )V Nr( ) m < Nr

D T m( )LD T Nη m( ) − 1( )V Nη m( )( ) otherwise










The important equation, which presents the principle for the fast 
estimation of adjoint deltas, is:

	

∆ PVn+1Xn( )
n=r

M −1

∑ = Vn 0( )
n=r

M −1

∑

=
9( )

D T 0( )D T 1( )
n=r

M −1

∑ LD T Nn − 1( )Vn Nn( )

= D T 0( )D T 1( )LDT Nr − 1( )
× Vr Nr( ) + D T Nr( )LD T Nr+1 − 1( )

× Vr+1 Nr+1( ) +L+ D T Nn−1( ) LD T Nn − 1( )
× Vn[ Nn( ) +LD T NM −3( )LD T NM −2 − 1( )
VM −2 NM −2( ) + D T NM −2( )LD T NM −1 − 1( ) × VM −1 NM −1( ) 

L]L

=
14( )
D T 0( )D T 1( )LD T NM −1 − 1( )V NM −1( )
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The corresponding adjoint vega is as a matter of course the sum-
mation of scalar products:

	 V T
m=0
NM −1−1∑ m + 1( )B m( )

since the scalar product is a bilinear operation.
Our new efficient algorithm extends the Monte Carlo method 

originally proposed by Giles & Glasserman (2006).
n Algorithm 1 (adjoint deltas and vegas of an H x M Bermudan 
swaption):
n (1) Running a forward simulation of the LMM on the tenor 
structure {T0, ... , TM} under the spot measure with p paths.
n (2) Performing the LSM algorithm, for each path w determining 
the optimal exercise time Tr(w).
n (3) For each path w:
(a) calculate VT(NM–1) ← V T

M–1(NM–1).
(b) for n from M – 2 to r(w) do
(i) Calculate V(m) backwards from m = Nn+1 to m = Nn in accordance 
with the recursive formula (11).
(ii) Calculate V(Nn) ← V(Nn) + Vn(Nn)
end for
(c) Computing V(m) backwards from m = Nr(w) to m = 0 according 
to the recursive formula (11).
(d) Calculating the delta vector as VT(0) or vega as:

	 V T
m=0
NM −1−1∑ m + 1( )B m( )

for the H × M Bermudan swaption regarding the path w.
n (4) Average the result over all paths.

Calibration and numerical results
We first look at a 1 × 20 Bermudan swaption with half-year con-
stant tenor distances (in financial terms: a 0.5 × 10 swaption), 
whose underlying is a 4.5% receiver swap, that is, we receive a 4.5% 
fixed rate and pay Libor at each tenor date. The nominal value is 
€10,000.

Our set-up is a one-factor model. For the tests, we used the inter-
est rate curve of forward Libors (figure 1) and the at-the-money 
swaption volatilities of February 19, 2009. We transformed the at-

the-money swaption volatilities into forward volatilities (see Brigo 
& Mercurio, 2001, for further details).

To check the consistency of our method, we also calculate the 
deltas and vegas with the bump and revalue method mentioned in 
the introduction and the forward method. The forward method is 
essentially the method developed by Piterbarg (2004).

We then estimate the deltas and vegas of the above 1 × 20 Ber-
mudan swaption for all the three methods (bump method with 
65,536 paths and bump sizes 0.0001 × 1bp, forward method 
with 32,768 paths and adjoint method with 32,768 paths), which 
are displayed in figures 2 and 3. They show that the adjoint 
method has the same accuracy as the forward method. Both meth-
ods are much faster than the traditional bump method, which is 
shown for comparison.

Test for efficiency
Next we compare the efficiency of the forward method and our 
improved adjoint method for the deltas and vegas of Bermudan 
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2. Bermuda swaption deltas calculated using 
adjoint method versus those calculated by forward 
method and bump method

1 The equation implies automatically that:

	
Vn

T 0( ) = VnT N0( ) = ∂PVn+1Xn

∂L 0( ) = ∆ PVn+1Xn( )

Here, Nn come from tNn = Tn for n = 0, ... , M – 1 and in more detail:

	

Vn
T Nn( ) j

= −
φNδ jδn Ln n( ) − R( )

1+ δ j L j j( )
1

1+ δ i Li i( )i=0

n

∏ for j = 1,...,n − 1

Vn
T Nn( ) j

= φNδn −
δ j Ln n( ) − R( )
1+ δ j L j j( ) + 1











1
1+ δ i Li i( )i=0

n

∏ for j = n

Vn
T Nn( ) j

= 0 for j = n + 1,...,M − 1
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swaptions. For this purpose, we test five 1 × M receiver Bermudan 
swaptions (M = 4, 8, 12, 16, 20) with half-year constant tenor dis-
tances. The fixed rate is 4.5% and the nominal value is e10,000. We 
use the same LMM and the same calibrated data from the market as 
above. Furthermore, we simulate each method with 32,768 paths 
and use the same sequence of random numbers.

Figure 4 plots the relative cost2 for the forward and adjoint 
method to calculate the deltas and vegas of the above Bermudan 
swaptions. The two curves with circles compare the forward and 
adjoint evaluations of deltas. The other two curves with crosses 
compare the evaluations of deltas and vegas. Figure 4 shows that 
the relative cost of the adjoint method is roughly constant, whereas 
the relative cost of the forward method increases nearly linearly 
with M. Compared with the relative cost figure in the original 
work by Giles & Glasserman (2006), we see a slight increase in 
the calculation of the adjoint delta and vega. This is a result of the 
LSM algorithm. So the adjoint method is much faster than the 
forward method when calculating deltas and vegas of Bermudan 
swaptions, especially for big M, that is, long maturities.

Conclusions
We have introduced an innovative adjoint algorithm to calculate 
the deltas and vegas of Bermudan swaptions, which is a very fast 
technique within simulation of the LMM. Bermudan swaptions 
belong to callable Libor exotics and are by far the most prevalent 
and important type of those. The other callable Libor exotics (for 
example, callable capped floaters and callable inverse floaters) dif-
fer from the Bermudan swaptions for the most part only in the 

computation of the coupons Xn. Thus we can also calculate the 
deltas and vegas for these callable Libor exotics through the same 
adjoint procedure. l
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3. Bermuda swaption vegas calculated using adjoint 
method versus those calculated by forward method 
and bump method
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