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Cutting edge: Risk management

Haircutting non-cash collateral
Value-at-risk-based, data-driven haircut models are subject to data quality issues and lack flexibility for further analysis.
Wujiang Lou develops a complementary parametric haircut model to conduct sensitivity tests, capture market liquidity risk,
allow idiosyncratic risk adjustments and incorporate relevant market information. Computational results show potential uses
in designing collateral haircuts for collateral agreements, such as credit support annexes, and in capital calculations

H
aircuts – discounts on the market value of securities taken in as

collateral – draw their intuition from earlier stock loan brokers’

desire to withstand stock market meltdowns without losses. That

intuition remains largely intact, although when statisticians got involved

and historical data became abundant, a confidence interval was used to

qualify the haircut. For example, a 15% haircut would give a 99% con-

fidence interval of no loss within 10 days, in typical value-at-risk lan-

guage. Naturally, simple intuition such as this does not call for sophisti-

cated methodologies or models. Today, haircuts appear in standard finan-

cial transaction documents, including the Master Repurchase Agreement

(MRA) for repos, the credit support annex (CSA) (to the International

Swaps and Derivatives Association Master Agreement) for swaps and

derivatives, and exchange or central counterparty (CCP) clearing agree-

ments. Basel’s risk capital framework is the only place where the term

‘haircut model’ is found. For advanced banks adopting Basel’s market

risk capital rules, VAR methodology with at least two years of histori-

cal data and internal haircut models are allowed, although no technical

specifics are given.1

Basel’s haircut models and the Financial Stability Board’s (FSB’s)

enhanced haircut framework (Financial Stability Board 2015) exemplify

a data-driven approach to haircuts. Although prudentially guarded with

qualitative and quantitative standards, a data-centric approach is only as

good as the data used, and it carries the usual caveat that history may or

may not repeat itself. Except for some on-the-run government securities,

debt instruments do not possess market liquidity anywhere close to the

equity market. It is customary in practice for historical data to be sourced

from an untradeable proxy index or a representative portfolio that is sim-

ilar in key product design features and risk characteristics, such as credit

rating and maturity. Such a proxy is obviously subject to data accuracy

issues, as underlying bonds trade sparsely. Another problem is that it erad-

icates progressively diverging idiosyncrasies as bonds age. When a bond

is on a downgrade watch, or it has seen large spread widening relative to

its peers, one may suspect it is riskier than other bonds and that its haircut

will deviate away and move higher.

By relying exclusively and directly on historical data, a data-driven

approach also lacks the flexibility of incorporating useful information

when it becomes available. The unprecedented price behaviour of US resi-

dential mortgage-backed securities (RMBSs) in 2007–8, for instance, ren-

dered their prior pricing history meaningless for setting haircuts via VAR.

In particular, investment grade (IG) RMBSs on the subprime mortgage

1 The Financial Stability Board’s new framework establishes a haircut
floor for non-centrally cleared securities financing transactions, requiring
the use of at least five years’ historical data that includes at least one
stress period (Financial Stability Board 2015). Banks’internal models are
basically methods of selecting and justifying a proxy index or portfolio.

loans of 2005–7 vintages priced close to par before plunging into the teens.

The VAR estimate at the time would have predicted single-digit haircuts,

in line with Basel II’s 8% haircut. Some banks, however, promptly hiked

bilateral repo haircuts up by multiples of themselves (Gorton & Metrick

2012), taking into account future price volatilities that were already exhib-

ited in their synthetic market kin: the asset-backed credit default swap

index.

To address these limitations, this article constitutes a first effort to

develop a parametric haircut model from asset pricing and credit risk

perspectives, capturing asset volatility, jumps and market liquidity risk. It

contributes to the literature by introducing credit risk measures to define

haircuts such that these measures can satisfy certain predetermined crite-

ria, eg, an AAA rating. Essentially, the original intuition of loss aversion is

transformed into the credit enhancement language typical of credit deriva-

tives and structured products. This article aims to develop a counterparty-

independent haircut model, leaving counterparty-dependent haircuts to a

separate effort (Lou 2016b).

Expanded haircut definitions
In a repo-style securities financing transaction, the lender is exposed to

the borrower’s default risk with a market-contingent exposure framed on

a short window for default settlement. The margin period of risk (MPR)

covers the time period from the last date when margin was met to the date

when the defaulting counterparty is closed out following the completion

of collateral asset disposal. The lender’s exposure in a repo during the

MPR is flat, as it is simply principal plus accrued and unpaid interest. A

flat exposure could apply to over-the-counter derivatives netting sets under

the CSA, if we assume that the derivatives exposure is hedged during an

MPR with its primary market risks. So, in an idealised setting, we consider

a counterparty (or borrower) C ’s default time at t , when the margin is last

met; an MPR of u, during which there is no margin posting; and collateral

assets that are sold at time t C u instantaneously at the market, with a

possible liquidation discount g, to account for market liquidity risk.

We denote the collateral market value as B.t/ and exposure to the

defaulting counterparty C as E.t/. At time t , one share of the asset

is margined properly, ie, E.t/ D .1 � h/B.t/, where h is a constant

haircut, 1 > h > 0. The margin agreement is assumed to have a zero

minimum transfer amount. The lender would have a residual exposure

.E.t/�B.t C u/.1� g//C, where g is a constant, 1 > g > 0. Exposure

to C is assumed to be flat after t . We can write the loss function from

holding the collateral as follows:

L.tCu/ D Et

�
1�

BtCu

Bt

1 � g

1 � h

�C
D .1�g/Bt

�
1�

BtCu

Bt
�
h � g

1 � g

�C
(1)
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Cutting edge: Risk management

Conditional on default happening at time t , the above determines a

one-period loss distribution driven by the asset price returnB.tCu/=B.t/.

Let y D 1 � BtCu=Bt be the price decline. If g D 0, Pr.y > h/ is

equal to Pr.L.u/ > 0/. If the price decline is less than or equal to h, there

is no loss. A first dollar loss will occur only if y > h. Thus, h provides

a cushion to protect against a loss being incurred. Given a target rating

class’s default probability p, the first loss haircut can be written as:

hp D inffh > 0 W Pr.L.u/ > 0/ 6 pg (2)

Let VARq denote the VAR of holding the asset; this is an amount the

price decline will not exceed, given a confidence interval of q, say, 99%. In

light of the adoption of expected shortfall (ES) in Basel IV, we can define

a haircut as the ES under the q-quantile:

hES D ESq D EŒy j y > VARq �

VARq D inffy0 > 0 W Pr.y > y0/ 6 1 � qg (3)

Without the liquidity discount, hp is the same as VARq . If haircuts are

set to VARq or hES, the market risk capital for holding the asset for a given

MPR, defined as a multiple of VAR or ES, is zero. This implies that we can

define a haircut to meet a minimum economic capital (EC) requirementC0:

hEC D inffh 2 RC W ECŒL j h� 6 C0g (4)

where EC is measured as either VAR or ES minus expected loss (EL).

For rating criteria employing the EL-based target for each rating class,

we introduce one more definition of haircuts based on the EL target L0:

hEL D inffh 2 RC W EŒL j h� 6 L0g (5)

The EL targetL0 can be set based on the EL criteria of certain designated

high credit ratings, whether internal or external. With an external rating

such as Moody’s, for example, a firm can set the haircut to a level such

that the expected (cumulative) loss satisfies the EL tolerance L0 of a

predetermined rating target, eg,Aaa orAa1. In (4) and (5), lossL’s holding

period does not have to be an MPR.

Unlike VARq , the definitions hp , hEL and hEC are based on a loss dis-

tribution solely generated by collateral market risk exposure. As such, we

no longer apply the usual wholesale credit risk terminology of probability

of default (PD) and loss given default (LGD) to determine EL. Here, EL

is computed directly from a loss distribution originated from market risk,

where the haircut should be wholesale counterparty independent.

Collateral price dynamics
The loss function (1) is an out-of-the-money put on the collateral asset,

which is predominantly decided by the asset return’s skewness and tail

characteristics. A study of haircuts is necessarily a study of tail behaviour.

Asset price models with stochastic volatility and jumps in both their return

and volatility are shown to improve empirical studies of stock indexes

(Eraker et al 2003). The double exponential jump-diffusion model (DEJD)

of Kou (2002) is popular in exotic and path-dependent options pricing due

to its appealing asymmetric jump specification and the ease with which it

performs transform analytics. Its extension, the mixed-exponential jump-

diffusion model (MEM) by Cai & Kou (2011), is capable of producing

a wide variety of skewed tail distributions. As the risk exposure window

(MPR) covers a short period of time, just days or weeks, and stochastic

volatility models are expected to have limited impact, particularly on hair-

cut designs that depend on a negative tail, we choose the DEJD and MEM.

We do so with a view that the MEM could be valuable in coping with the

excessive skewness and fat tails of securitisation debts.

The log return of a jump-diffusion asset price Bt has the form:

Xt D log

�
Bt

B0

�
D �t C �aWt C

NtX
jD1

Yj (6)

where � is the asset return, �a is the asset volatility, W.t/ is a Brownian

motion, N.t/ is a Poisson process with intensity � and Yj is a random

variable denoting the magnitude of the j th jump. With the MEM, Yj ,

j D 1; 2; : : : , are a sequence of independent and identically distributed

mixed-exponential random variables, with a probability density function

fY .x/ given by:

fY .x/ D pu

mX
lD1

pl�le
��lxI fx > 0g C qd

nX
jD1

qj �j e�j xI fx < 0g (7)

where pu and qd are up-jump and down-jump switching probabilities,

puCqd D 1. In addition,pl is the weight (not necessarily in a probabilistic

sense) of the l th up-jump mixture exponentially distributed at a rate of

�l > 1,
P
pl D 1. Similarly, �j > 0 is the j th down-jump mixture’s

rate, and qj are weights that sum to 1,
P
qj D 1. Obviously, this reduces

to the DEJD when m D n D 1.

The probability of the cumulative loss exceeding an amount b, L.u/ >
b, ie, the tail cumulative density function (cdf), can be mapped to Xu’s

cdf:

Pb j h D EŒI fL.u/ > bg� D Pr

�
Xu 6 log

�
1 � h � b=B0

1 � g

��
(8)

Fixing a haircut h, this gives the loss distribution Pb as a function of b.

Fixing b, Pb becomes a function of h, which can be inverted to solve for

h given a target level of Pb . VAR can be solved by setting Pb D 1 � q.

Obviously, setting b to zero leads to (3). It is useful for implementations

to note that (8) is translational in h and b, ie, Pb j h D Pb� j h
�, where

b� D b C .h � h�/B0.

The EL relates to the undiscounted European put option fair value:

EŒL.u/� D .1 � g/EŒ.K � Bu/
C� D .1 � g/P.K/ (9)

where K D ..1 � h/=.1 � g//B0 and P.K/ is the undiscounted put fair

value. Fixing h, and thus strike K, the put fair value can be obtained by

means of an inverse Laplace transform. Finding h given an EL target is a

simple numerical inversion.

The intuition that a haircut is a cushion against investment loss is cap-

tured in (9) and can be seen easily when the L D .K � Bu/
C term is

reformatted as ..B0�Bu/�hB0/
C with g D 0. If we consider an invest-

ment of amount B0, the haircut h effectively cuts the investment into two

tranches, a senior tranche of .1 � h/B0 and a subordinated tranche of

hB0. In standard collateralised debt obligation (CDO) terminology, h is

the attachment point of the senior piece whose loss function is L. Sup-

posing that La and Lb correspond to ha and hb, ha < hb, so La > Lb.

La;b D La�Lb is the loss of a mezzanine tranche with an attachment point

of ha and a detachment point of hb. Such a viewpoint is relevant for secu-

ritisation products, where different tranches are traded in the same market
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Cutting edge: Risk management

while underlying assets can be traded separately; but a data-driven haircut

approach would determine haircuts irrespective of their structural linkage.

Jump-diffusion models such as the DEJD have been studied primarily

for stock returns and bond yields. In our haircut model, it is also used for

bond price returns. Modelling the price rather than the yield term structure

for fixed-income securities is justified because the MPR is very short. Bond

options, for example, are priced using the Black-Scholes option pricing

model with lognormal bond price dynamics, as their terms are typically

of three months or less.

The conditioned loss distribution (8) and EL (9) do not enlist the deriva-

tives counterparty or repo borrower’s credit quality. Repo-style transac-

tions have recourse to the borrower’s general credit, and, as such, repo hair-

cuts are counterparty dependent and procyclic (Gorton & Metrick 2012).

Haircuts in CSAs and regulatory capital contexts are counterparty indepen-

dent, as collateral is deliberately used to mitigate counterparty credit risk.

The extended definitions (2)–(5) allow counterparty-independent haircuts

and counterparty-dependent haircuts to be modelled within the same ana-

lytical framework. The diffusion component of the DEJD model can be

made to correlate with the dynamic spread of the counterparty or repo

borrower to capture wrong-way risk, as is shown in a companion paper

(Lou 2016b).

Numerical techniques
The computation of loss distribution and EL reduces to the cdf of Xt and

the undiscounted European put valuation. For the mixed exponential jump-

diffusion process X.t/ specified in (6) and (7), Cai et al (2014) develops

a two-sided Laplace transform analysis. The Laplacian for the probability

density function fX.t/ is denoted by LfX.t/ :

LfX.t/.s/ D EŒe
�sXt � D

Z 1
�1

e�sxfX.t/.x/ dx D eG.�s/t (10)

where the Lévy exponent function is:

G.x/ D 1
2�
2
a x
2C�xC�

�
pu

mX
lD1

pl�l

�l � x
Cqd

nX
jD1

qj �j

�j C x
�1

�
(11)

with a range of absolute convergence (ROAC) of (�min.�l /, min.�j /) for

Re.s/, the real part of the complex number s. The Laplace transform for

the cdf FX.t/ of X.t/ is then simply LF .s/ D Lf .s/=s, with its ROAC

Re.s/ 2 .0;min.�j //. For the undiscounted European put option with

strike K, if we denote its fair value P as a function of the normalised log

strike k, such that K D B0e�k , then P.k/ D EŒ.B0e�k � Bt /C�. We

apply the two-sided Laplace transform to P.k/, k 2 .�1;1/:

LP.k/.s/ D

Z 1
�1

e�skEŒB0.e
�k�eX.t//C� dk D

B0

s.s C 1/
Lf .�s�1/

(12)

with a ROAC of (�min.�j / � 1;�1). The Laplacian for a European call

option is exactly the same as that of the put option, although the ROAC

will be Re.s/ 2 .0;min.�j /�1/. Note the formula above is different from

Cai et al (2014), where the Laplacian of the European call option price

is conducted on the log of the strike K and LEuC.s/ D .BsC10 =.s.s C

1///Lf .�s � 1/. Our strike normalisation with moneyness is necessary,

as it allows us to use the same error control over the put payoff (loss) and

the tail cdf under the same parameters.

Having computed the two-sided Laplace transform of the pdf LfX.t/ ,

the cdfLFX.t/ and the loss or putLP.k/ , the two-sided Laplacian inversion

algorithm shown in the appendix is used to solve for loss distribution (8)

and EL (9).

The DEJD model has six parameters (�; �a; �; p; �; � ) that need to

be determined either through model estimation from historical data or

calibration to traded instruments. In the context of regulatory haircuts,

a historical estimation is generally required. When historical asset price

data, either directly or as a proxy, is satisfactorily available and reliable,

the model can be estimated via a maximum likelihood estimation (MLE).

The likelihood function is written as H.�; �a; �; p; �; � j x/ D fX.t/.x j

�; �a; �; p; �; �/ for a return data point x. The two-sided Laplacian of

the pdf (10) can be inverted to arrive at H.� j x/. Ramezani & Zeng

(2007) provide an explicit likelihood function formula for the DEJD model

involving the sum of double infinite series as a result of conditioning on

up- and down-jump counts; they find the DEJD generally produces a better

fit for stock indexes than for individual stocks.

Given a log return time series xi , i D 1; 2; : : : ; N , our estimation

becomes an optimisation problem:

max
Y
i

H.�; �a; �; p; �; � j xi /

such that �a > 0; � > 0; 0 6 p 6 1; � > 1; � > 0 (13)

There are no constraints other than these simple lower or upper bounds.

The likelihood function can also be written as (�; �a; �u; �d; �; � j x)

by a change of variable �u D �p and �d D �.1 � p/. For the results

presented below, we have taken optimisation routines off shelves from

Matlab’s median-sized constrained nonlinear optimiser fmincon, utilis-

ing an active-set algorithm, with sequential quadratic programming (SQP)

and quasi-Newton line search.

In this article, we follow a simple estimation procedure. To begin, cal-

culate the sample’s mean �0 and standard deviation �0, and then estimate

the remaining four parameters of the DEJD model with (�; �a) fixed at

(�0, �0). Now, re-estimate the model with� fixed at�0, and �a relaxed so

that five parameters are sought with initial values taken from the previous

estimation’s outcomes. Last, repeat the estimation with � also relaxed in

order to estimate the full set of six parameters. This procedure’s intention

is to find a stable local minimum close to the lognormal model, recog-

nising throughout that finding the global minimum is difficult and time

consuming for this type of highly nonlinear optimisation problem.

Applications and results
The counterparty-independent haircut model outlined above can be used to

determine repo haircuts with or without recourse to a hindered or extremely

weak repo counterparty. It could be a candidate for internal haircut models,

as per Basel and FSB requirements, or used to design the non-cash collat-

eral haircuts increasingly seen in collateral and margining agreements.2

Below we demonstrate how the model is applied to three main non-cash

2 Collateral haircuts or CSA haircuts are necessarily counterparty inde-
pendent. Consider overnight indexed swaps (OIS) discounting under a full
cash CSA, where trades are indifferent to counterparties or free of bear-
ers. Now, suppose that a party posts corporate bonds: the haircut applied
should be such that it reproduces the counterparty-free bearer form, or
the OIS discounting will no longer apply.
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1 Predicted main equity haircuts (MPR: 10 days) targeting
hypothetical Moody’s one-year loss rates, eg, 0.00003%,
0.00031%, 0.00075% and 0.00166%, for Aaa/Aa1/Aa2/Aa3, as
per Bielecki (2008), and S&P’s average one-year default rates,
eg, 0.0005%, 0.001%, 0.01% and 0.02%, for
AAA/AAC/AA/AA�, as per Standard & Poor’s (2015)
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Moody's S&P

collateral classes – equity, corporate bonds and securitisation – intertwined

with considerations of liquidity risk, haircut sensitivities and model risk.

� Equity main index The Standard & Poor’s 500 index (SPX) is com-

monly used as a proxy for US main equities. To satisfy the FSB’s require-

ment of a five-year history consisting of at least one stress period, we

choose the period from February 1, 2008 to February 1, 2013, as SPX

experienced significant stress during the second half of 2008 and early

2009, at the height of the financial crisis. The estimated DEJD has:

.�; �a; �u; �d; �u; �d/ D .0:1984; 0:1512; 37:53; 40:24; 71:51; 60:56/

and produces �0.5136 in skewness and 10.50 in kurtosis, compared with

a sample skewness of �0.2443 and kurtosis of 9.95.

Figure 1 shows predicted haircuts targeting Moody’s and Standard &

Poor’s (S&P) IG credit ratings, ie, hEL and hp . The hypothetical S&P ‘A’

and above rating-targeted haircuts are about three to five points higher

than Moody’s corresponding rating-targeted haircuts. Caution should be

taken, however, as these default rates and loss rates are examples and not

directly comparable with each other. Here, our intention is to show that

the methodology works for both PD and EL approaches.

� Securitisation debts and liquidity risk Non-cash collateral is dom-

inated by fixed-income instruments. Unlike equities, these instruments’

market liquidity depth is very limited, except for on-the-run government

debts. In practice, a data-driven haircut approach has to rely on non-

tradable market indexes as proxies to the unobserved data. Because of its

fixed maturity, a bond’s historical price series (if reliably available) suffers

from a progressive shortening of the remaining maturity. As a result, debt

securities haircuts are estimated by putting them into residual maturity

buckets.

Repo counterparties wishing to adopt regulatory haircuts often find the

supervisory haircuts table is set too broadly, not distinguishing among

many types or subclasses of assets and risk characteristics of securitised

assets. US commercial mortgage-backed securities (CMBSs), one of the

main securitisation products seen in repos, are not even found in the table.

In fact, there is only one securitisation category. Typical triparty hair-

cut schedules have much finer granularities, with close to 100 line items

A. Predicted CMBS 10-day haircuts per rating subclass and residual
maturity bucket, targeting Aa1 with comparisons to raw haircuts and
liquidity-adjusted haircuts

Rating Maturity Aa1 HC 2% LP dHC 5% LP dHC LP HC Raw HC (VAR)
AAA 1–5Y 5.08 1.88 4.70 6.96 4.80
AAA 5–10Y 12.27 1.68 4.22 16.49 11.52
AA 1–5Y 6.11 1.82 4.56 7.93 6.08
AA 5–10Y 20.35 1.63 4.08 24.43 23.49
A 1–5Y 9.14 1.84 4.60 10.98 6.93
A 5–10Y 20.22 1.65 4.12 24.34 26.44

offered. With a parametric haircut model in place, more granular haircuts

can be computed per asset type, subclass and maturity bucket.

Table A shows CMBS haircuts predicted using DEJD models of Bank

of America Merrill Lynch CMBS price indexes estimated on daily time

series from January 2008 to January 2013. The maturity up-sloping effect

is evident as 5–10Y bucket haircuts are higher than those of 1–5Y bucket

haircuts for all ratings. AAA rated CMBSs have much lower haircuts than

those of AA and A rated bonds, eg, 5.08% for an AAA 1–5Y bucket com-

pared with anAA at 6.11% and anA at 9.14%, when targeting Moody’sAa1

rating. The last column of tableA lists raw data haircuts as the standard 10-

day, 99-percentile VAR. The estimated models are able to produce haircuts

that closely match the raw haircuts for 1–5Y maturity AAA and AA.

Greater differences are seen in 5–10Y maturity AA and A, eg, an AA

haircut at 20.35% under an Aa1 target rating versus a 23.49% haircut from

VAR. These can be attributed to market liquidity risk, intensified with pri-

vate securitisation and lower-grade corporates, which trade infrequently

and often rely on valuation services. Table A illustrates the additional hair-

cuts (in percent) when 2% and 5% liquidity premiums (LPs) are applied. In

this case, 2% can be seen as business-as-usual for non-super senior IG secu-

ritised products, while 5% is indicative of stress. Roughly speaking, these

liquidity shocks translate into the same magnitude of additional haircuts.

Column ‘LP HC’ adds ‘2% LP dHC’ to 1–5Y maturity and ‘5% LP

dHC’ to 5–10Y maturity. For AA 5–10Y CMBSs, the Aa1 haircut with

5% liquidity premium is 24.43%, slightly higher than the raw haircut of

23.49%. Using precrisis historical data (January 2002 to January 2007)

shows a 3.44% haircut, while Gorton & Metrick (2012) show a bilateral

haircut at 27.5% for AA rated CMBSs during the crisis. This elevated

haircut is explained by the liquidity draught that faced asset-backed secu-

rities following the subprime crisis as well as sharp increases in experi-

enced volatility and anticipated future volatility. Both liquidity and asset

volatility are incorporated into our model.

� Corporate debts and idiosyncratic adjustments The last major

asset class we will demonstrate is US IG corporate bonds, using Bank

of America Merrill Lynch US corporate bond price indexes from January

2008 to January 2013. Table B shows single A rated bonds with residual

maturities of 1–5 and 5–10 years. Compared with Basel III supervisory

haircuts for 20% risk-weighted wholesale issuers at 4% for a residual

maturity of 1–5 years, and at 8% for 5C years, Aaa is the target rating

that gets closest to the supervisory haircuts. The differences between Aa1

targeted haircuts and the raw haircuts are of the same scale as bond bid/

ask spreads.

Once a proxy historical price series is chosen and justified, the collateral

haircut is trivially given via the VAR approach. An estimated parametric

model will not add value if its sole use is to reproduce collateral haircuts.

The parametric model is useful, however, in that it facilitates a meaningful
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B. Haircuts for A rated corporate bonds. 1–5Y and 5–10Y maturities
receive raw haircuts of 4.25% and 6.43%, respectively

Shifts Aaa Aa1 Aa2
HC (1–5Y) 3.87 2.98 2.64
HC (5–10Y) 6.49 5.19 4.68
�C 1% �0.03 �0.04 �0.04
�a C 1% 0.37 0.34 0.32
�u � 1 0.01 0.01 0
�d C 1 0.07 0.04 0.04
�u C 10 0.01 0 0
�d � 10 0.26 0.2 0.18

Sensitivities shown for 5–10Y maturities with shifts based on (�, �a , �u, �d, �u, �d)
D (0.0729, 0.0525, 13.82, 31.90, 212.6, 225.6)

sensitivity analysis of the collateral haircut, as shown in table B. Sensitivity

to the up-jump rate and down-jump rate (�u, �d) is asymmetric as expected,

as haircuts measure one-sided loss and depend on down jumps rather than

up jumps. A roughly 3% shift in volatility will lead to a haircut increase of

1%. Given increased market volatility, haircut deltas or adjustments can

then be computed and added to applicable haircuts; scenario analysis and

stress tests can be conducted as desired.

Moreover, the parametric model allows idiosyncratic factors to be incor-

porated as adjustments. When model estimation is performed based on an

index return, index constituents are averaged out. For a long-running index,

constituents’ credit quality and market performances will diverge as the

index ages. So far, practitioners do not have a tool to adjust this ageing

effect. With a parametric model at hand, one could create a delta model

for the deteriorating credits. For instance, the down-jump size distribu-

tion parameter �d can be adjusted down to reflect larger jump sizes, the

down-jump intensity can be increased or the volatility �a can be hiked. On

a first-order basis, the sensitivity table could thus be used to incorporate

idiosyncratic risk characteristics into a proxy index or portfolio.

� Parameterisation stability and model risk Compared with a data-

driven haircut approach, a parametric model of haircuts introduces poten-

tial model risk. In our context, this is related to the model parameter

estimation errors or stability. We conduct quarterly rolling SPX model

estimations covering 2005 Q1 to 2009 Q4. For each quarter, a five-year

sample is taken, eg, a 2005 Q1 sample from January 1, 2005 to January 1,

2010. The stress period is taken from January 7, 2008 to January 7, 2009,

so the last two estimations (2009 Q3 and 2009 Q4) are not part of it. Fig-

ure 2 shows that model-computed standard deviations and haircuts drop

for 2008 Q3/Q4 samples, because the remainder of the five-year series lies

mostly outside of the stress period.

The jump parameters are shown in figure 3. The most volatile period

occurs in 2008, deep in the financial crisis. As we approach the end of the

sample series, the intensities for both up and down jumps become weaker,

and jump sizes also decrease (the average up-jump size is the reciprocal

of �u), as the index has a much less volatile period following Q3 2009.

The estimated models’ kurtoses are generally in line with those of the data

samples, indicating a good fit of the tail. The overall behaviour is expected

and relatively stable. As appropriate, once model risk is determined and

quantified to be substantial, a haircut add-on could be levied to compensate

for it. The results shown above do not suggest an immediate need for this,

but it is good to remain vigilant.

As discussed earlier, being overly dependent on historical data is a source

of model risk, eg, the subprime mortgage bonds.An alternative to estimated

models is a model calibrated to options or other relevant markets. Table C

2 Estimated sample standard deviation and Aa2 haircuts
change as the five-year SPX series rolls quarterly from
January 1, 2005 to January 10, 2009
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3 Estimated S&P 500 DEJD jump parameters between
January 1, 2005 and January 10, 2009
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C. SPX haircuts under two implied risk-neutral DEJD models, compared
with a raw haircut of 14.44% and a regulatory haircut of 15%

Aa1 Aa2 Aa3
CKL-2014 34.48% 31.48% 28.66%
Cai-Kou 17.86% 15.93% 14.15%

shows haircuts under each of two calibrated MEM models for the SPX: the

Cai-Kou model (Cai & Kou 2011) is calibrated to SPX European options,

while CKL-2014 (Cai et al 2014) is weighted more towards SPX option

smiles. The Cai-Kou model is in line with a 15% supervisory haircut, but

the smile-leaning CKL-2014 model overshoots haircuts. This reflects the

danger of exclusively calibrating to deep out-of-the-money put options,

which are known to consist of significant liquidity premiums.

Conclusion
A data-driven haircut approach such as VAR is subject to limitations in

data availability, reliability and flexibility. In this article, we introduce a

complementary parametric haircut model employing asset volatility and

asymmetric jumps to conduct haircut sensitivity analysis, capture liquid-

ity risk, adjust for idiosyncrasy and incorporate useful information from

related markets. For example, a proxy data series fails to capture a specific

bond’s recent price behaviour and credit deterioration when it becomes
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evidently idiosyncratic. Our model allows us to stress volatility, downward

jump magnitude or probability to quantify the impact.

The new model may find applications in haircut design for non-cash col-

lateral, which is becoming increasingly accepted in CSAs and exchanges,

or CCPs’clearing and margining agreements. It can be used as a candidate

regulatory internal haircut model, following on from the FSB’s strength-

ened regulatory haircut framework, which is expected to be implemented

by the end of 2018. Preliminary results show that estimated DEJD mod-

els with a stress period are able to produce haircut levels consistent with

collateral haircuts for equities, corporate bonds and securitised products,

as typically seen in CSAs and Basel. Since there is no default history

to study top (AAA) rated corporates’ default frequency or loss rates, we

recommend haircut designs targeting AAC (Aa1) or AA (Aa2).

The model could be extended to study counterparty-dependent hair-

cuts (eg, repo haircuts) with wrong-way risk taken into consideration.

Application of the MEM as an extension of the DEJD model could be

explored, with the view that its enhanced skew- and tail-capturing abili-

ties might be needed for securitised debts where structural linkages exist. It

would also be interesting to see stochastic volatility jump diffusion models’

performances for haircut purposes.

Appendix: Laplace inversion procedures
Cai et al (2014) propose a two-sided Laplacian inversion algorithm. To

solve for fX.t/:

f .t/ D fA.t; �; C;N /C eT.t; �; C;N / � eD.t; �; C /

fA.t; �; C;N / D
exp.� t/Lf .�/

2.jt j C C/
C

exp.� t/

jt j C C

�

NX
kD1

�
.�1/k Re

�
exp

�
�
k� iC sgn.t/

t C C sgn.t/

�

� Lf

�
� C

k� i

t C C sgn.t/

���

(14)

where fA provides an accurate approximation of f .t/when the truncation

error eT and the discretisation error eD are small. � is a number in the
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ROAC, C > 0 is a shift constant to control eD and N > 0 is the number

of truncation terms to control eT.

The truncation error eT is bounded as:

jeT.t; �; C;N /j 6
&.�/e�t

�	
.1�ˇ/=�
�

�
.1 � ˇ/

	
; 


�
�

jt j C C
N

���
(15)

where � .a; b/ is the upper incomplete gamma function of order a and

lower bound b. For the inversion of pdf Laplacian Lf , these parameters

are listed below:

ˇ D 0; 
 D 1
2�
2
a t; 	 D 2; �.�/ D etG.��/ (16)

For cdf LF , use ˇ D 1. For European put options LP , ˇ D 2 and

�.�� � 1/ can be easily shown, following the derivation of Cai et al

(2014). We propose a different set of parameters so the relative errors can

be determined for all three inversions: (17), (18) and (19) for pdf, cdf and

put, respectively:

ˇ D 0; 
 D 1
2�
2
a t; 	 D 2; �.�/ D etG.��/ (17)

ˇ D 0; 
 D 1
2�
2
a t; 	 D 2; �.�/ D

etG.��/

j� j
(18)

ˇ D 0; 
 D 1
2�
2
a t; 	 D 2; �.�/ D

etG.�C1/

.� C 1/2
(19)

Noting that the &.�/e�t term in (15) also appears in fA’s leading term,

while the rest of the variables in (15) do not depend on which Laplacian is

being converted, the relative errors of eT to fA are therefore independent,

so the same N can be used for all three inversions.�
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