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models, the loss given default (LGD)1 is 
either incorporated deterministically (as in 

Credit Risk+) or stochastically (as in CreditMetrics). In the latter 
case, the LGD may be drawn from a beta distribution.2 In both 
cases, no correlation between default and LGD is considered.

In economic downturns, not only do probabilities of default 
(PDs) increase, but recovery rates also decrease. This pattern can 
be seen in historical data (see, for example, Frye, 2000, or 
Altman, et al., 2003). To incorporate this relationship into credit 
risk models, several basic approaches have been proposed. Frye 
(2000) and Pykthin (2003) give first insights into a single-factor 
model for PD and recovery rate containing systematic and 
idiosyncratic risk. Düllmann & Trapp (2004) compare various 
transformations for the recovery rate. All of these authors use a 
single-factor model for PD as well as for recovery rate. They 
assume that the systematic risk that drives PDs influences 
recovery rates in the same way. Frye (2000) and Düllmann & 
Trapp (2004) estimate the PD model and use the realisations of 
the systematic risk factor as an input factor to the recovery rate 
model. Then the intercept, the parameter for the systematic and 
the idiosyncratic risk are estimated using a maximum-likelihood 
approach. Chava, Stefanescu & Turnbull (2006) use issuer-
specific, time-dependent data to model default and recovery rates 
simultaneously. They also use the same systematic risk factor for 
defaults and recovery rates.

Our contribution includes four new aspects. First, we allow the 
systematic risk factors for PDs and recovery rates or LGDs to be 
different, leading to a more general approach. Second, we split the 
systematic risk in PD and LGD into an observable and an 
unobserved part. The observable part can be modelled using 
macroeconomic variables. This leads to a decreasing impact of the 
unobservable systematic risk factors. Third, the estimation of PD 
and LGD in separate models leads to biased estimates of the LGD 
parameters and, therefore, to biased predictions of the portfolio 

loss.3 Risk measures such as value-at-risk (VAR) or conditional 
VAR (CVAR) tend to be overestimated. In this article, a 
simultaneous approach is developed to overcome this problem. 
Fourth, individual time-dependent data of issuers and bonds is 
used to estimate PD and LGD and the loss of a portfolio.4 

This article is structured as follows. The next two sections show 
the modelling of PD and LGD. Then, we give the maximum 
likelihood equation to calculate the parameter estimates of the 
joint model, where PD, LGD and the correlation parameter of 
the PD model and the LGD model are estimated simultaneously. 
Then the simulation approach for the prediction of the loss 
distribution is shown. Then the data for the empirical analysis is 
shown. Following that, the results from the joint modelling of the 
PD and the LGD model are represented. Then the empirical loss 
distributions of the separate and the joint modelling of PD and 
LGD are interpreted. We then conclude.

PD model
The states ‘default’ and ‘non-default’ of obligor i in period t – in 
most applications, one year – are modelled using the indicator 
variable Dit, that is:
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where i ∈ Nt and t = 1, ... , T. Nt denotes the ‘risk set’ consisting of 
all obligors of the portfolio who did not default at the beginning 
of period t.

For instance, in the model, the default event may be triggered 
when a metric variable Sit (i ∈ Nt, t = 1, ... , T) falls below a 
prescribed threshold cit at a particular point in time (in the 
observed period) t:

	 Sit < cit ⇔ Dit = 1	 (1)

Sit can be interpreted as the standardised return of a firm’s assets. 
The random variable Sit is assumed to be latent and unobservable. 
The seminal works of Merton (1974, 1977) and Black & Scholes 
(1973) laid down the fundamentals for this approach. Here, the 
Basel II single-factor model is assumed for the random variable 
Sit, which triggers the default event, that is:

	 Sit = wFt + 1 − w2Uit 	 (2)

where i ∈ Nt and t = 1, ... , T. Ft represent independent standard 
normally distributed, systematic risk components, that is, 
components that have an impact on all firms at a specified time 
and thus are not diversifiable. Idiosyncratic (and hence diversifiable) 
risk drivers Uit are also assumed to be standard normally 

Default and recovery correlations – 
a dynamic econometric approach

1 The LGD is one minus the recovery rate.
2 See Gupton, Finger & Bhatia (1997) and Credit Suisse First Boston (1997).
3 The authors would like to thank an anonymous referee for helpful comments on this subject.
4 �Rösch & Scheule (2005) calculate empirical correlations in a simultaneous approach as well, but use 

aggregated data.

Integrating coherences between defaults and 
loss given default (LGD) is postulated by Basel II. 
If there is a positive correlation between the two, 
separate models for each lead to biased estimates 
for the LGD parameters, and the economic loss is 
overestimated. Alfred Hamerle, Michael Knapp and 
Nicole Wildenauer show that the bias vanishes if 
a simultaneous approach is used, leading to lower 
predicted LGDs and thus lower regulatory and 
economic capital requirements

In credit risk
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distributed. Moreover, the unsystematic risks of different firms are 
assumed to be independent of each other and, of the systematic 
risk factors, Ft. w denotes the exposure to a common risk factor. w2 
denotes the correlation of Sit and Skt of two borrowers i and k and 
is often referred to as the asset correlation.

Together with equation (1) and given threshold cit we obtain 
the conditional PD in probit specification given the systematic 
risk factor Ft:  
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where Φ(.) denotes the distribution function of the standard 
normal distribution.

The unconditional PD is obtained by integrating with respect 
to Ft, that is:

	
λ it = E λ it Ft( )( ) = λ it ft( )ϕ ft( )dft

−∞

∞

∫ = Φ cit( )
	

(4)

where j(.) denotes the density function of the standard  
normal distribution.

Next, observable obligor-specific and systematic risk factors 
can be integrated into the modelling approach. The observable 
components of systematic default risk capture changes in the 
macroeconomic environment, specifically cyclical developments, 
and are comprised in the vector z1, t – 1 described below.5 The key 
variables are macroeconomic indicators such as interest rates, the 
unemployment rate, the gross domestic product (GDP) growth 
rate, etc. As a result of this analysis, the major macroeconomic 
risk drivers affect PD with a time lag of at least one year. As the 
values of these risk factors are known when the prediction of PD 
is made, a further source of uncertainty is eliminated. Obligor-
specific risk can be integrated into the form of rating information, 
size, legal form or age of a company. It is summarised in the vector 
xi, t – 1. The corresponding parameter vectors for xi, t – 1 and z1, t – 1 
are denoted by b and g1, respectively. Here, individual and time-
dependent default thresholds cit are determined for each obligor:

	 cit i t t= + ′ + ′− −b0 1 1 1 1bb ggx z, , 	 (5)

The special case considered by, for example, Düllmann & Trapp 
(2004) and others is given by the constant threshold: 

cit = b0

for all i and t.
Taking (3) into account, this leads to the following specification 

for a certain risk segment, for example, a sector: 
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(6)

From (6) it can be seen that the PD model is a generalised 
linear mixed-effects model with probit link function. The 
parameters of the PD model can be estimated by the maximum 
likelihood method.6 

LGD model
Here, we model the LGD rather than the recovery rate. More 
precisely, we consider the logit transformed LGD Yt( j) of the jth 
defaulted bond in period t:
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Written in terms of the recovery rate Rt( j), we obtain:

	

Yt j( ) = log
1 − Rt j( )
Rt j( )

= − log
Rt j( )

1 − Rt j( ) 	
(8)

where LGDt( j) = 1 – Rt( j). The logit transformation of the recovery 
rate is also proposed by Schönbucher (2003) and Düllmann & 
Trapp (2004).7 

We use the index t(j) to indicate that the jth defaulted bond in 
period t is different from the jth defaulted bond in another period   
s (t ≠ s, j = 1, ... , mt). mt denotes the number of defaulted bonds 
in period t.

In analogy to the model for the PD, the following approach for 
the transformed LGD Yt( j) is specified:8 

	
Y b G b Et j t t j( ) ( )= + +m 1 2 	

(9)

where m denotes the mean of the transformed LGD Yt( j).
9 Now 

the systematic risk factor is denoted with Gt, which is assumed to 
be independent standard normally distributed. The idiosyncratic 
risk drivers Et( j) are assumed to be standard normally distributed 
and independent of each other and of the systematic risk factor 
Gt. b1 denotes the impact of the systematic risk factor Gt, and b2 
denotes the impact of the idiosyncratic risk factor Et( j). As an 
extension to Frye (2000), Pykthin (2003) and Düllmann & 
Trapp (2004), we assume there may be different unobservable 
systematic risk factors Ft and Gt influencing PD and LGD.

We use an extended version where the (transformed) LGD is 
explained by observable issuer- and debt-specific factors vt – 1( j) 
such as debt rating, seniority, guarantee of a second entity, 
maturity, etc. The economic conditions can be incorporated by 
macroeconomic factors z2, t – 1, which may be different from the 
ones used in the PD model. Hence, m transforms to mt( j) and can 
be written as:

	  
µ t j( ) = α0 + ′a v t−1 j( ) + %a2′z2, t−1

	
(10)

Taking (9) into account, we obtain:

	
Y b G b Et j t j t t t j( ) − ( ) − ( )= + ′ + ′ + +a0 1 2 2 1 1 2aa ggv z ,

	
(11)

The corresponding parameter vectors for vt – 1( j) and z2, t – 1 are 
denoted by a and g2, respectively. a0 is an intercept. The LGD 
model is a linear mixed-effects model for the logit transformed 
LGD (see McNeil & Wendin, 2005).

Joint model estimation
Dependence between default rates and LGD can be found in 
empirical data.10 The question is: how to insert this coherence? 

5 �The index one at z1, t – 1 is to distinguish the vector of macroeconomic values of the PD model from the one 
in the LGD model.

6 See, for example, Hamerle, et al. (2005) or McNeil & Wendin (2005).
7 �This transformation ensures that estimated and predicted recovery rates and LGD are between zero and 

one. We model LGD instead of recovery rates. (8) shows that modelling the recovery rate means 
modelling –Yt( j) instead of Yt( j). The special cases of an LGD of zero and one cannot be incorporated in 
(7) and should be treated separately because they would lead to a transformed LGD of –∞ and an LGD 
that is not defined, respectively.

8 �This model is equivalent to the logit specification in Düllmann & Trapp (2004), although another 
parameterisation is used here.

9 �The LGD is always conditional on default. Therefore, only data of defaulted bonds is used to estimate the 
model. Non-defaulted bonds are assigned a loss of zero.

10 See Frye (2000).
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Frye (2000) introduces a model where the same systematic risk 
that drives the default rate also drives the recovery rate. He assumes 
large portfolios that are perfectly diversified. As this is not always 
true in the credit portfolios of typical banks, another method to 
introduce correlation between default and LGD is needed. 

In this article, correlation between defaults and LGDs is 
introduced via the unobservable systematic risk factors Ft and Gt, 
which may be correlated. However, a serious difficulty arises if 
the PD model and the LGD model are estimated separately. 
Assuming that Ft and Gt are correlated leads to biased estimates 
of the LGD model when using only model (11) for estimation. In 
particular, the average LGD is overestimated.11 The bias vanishes 
if Ft and Gt are independent normal random variables.

Several simulation studies were carried out.12 They show that 
the bias may be considerable and should not be neglected. It 
should be mentioned that this is in contrast to usual econometric 
multi-equation models where estimators based on single-equation 
models are usually still consistent but, in general, not efficient.

To avoid the bias in the LGD model, we suggest a joint 
estimation procedure using a maximum likelihood procedure 
that allows the joint estimation of all coefficients, including those 
of models (6) and (11), with observable risk factors. 

We assume that the random vector (Ft, Gt)′ has a standard 
normal distribution with correlation parameter r, that is:
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For the joint distribution of Ft and Yt( j), we obtain:
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(13)

Furthermore, Cov(yt(j), yt(l)) = b2
1 for two bonds j and l, where j ≠ l.

Since the random vector (Yt(1), ... , Yt(mt)
, Ft)′ has a multivariate 

normal distribution, the conditional distribution of yt = (Yt(1), ... , 
Yt(mt)

)′ given Ft is also multivariate normal (see, for example, Searle 
(1971), page 47). Its mean vector and covariance matrix can be 
calculated as:
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where mt = (mt(1), ... , mt(mt)
)′ and:
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Then, the conditional joint density function of defaults and LGDs 
given the unobservable risk factor ft can be written as:
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The unconditional joint density is given by: 
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(17)

Observing a time series with T periods leads to the final 
unconditional log-likelihood function:
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The integral on the right-hand side of (18) can be approximated 
by the adaptive Gaussian quadrature as described in Pinheiro & 
Bates (1995). Usually, the log-likelihood function (18) is 
numerically optimised with respect to the unknown parameters 
for which several algorithms, such as the Newton-Raphson or the 
(dual) quasi-Newton optimisation method, exist.13 

Simulating loss distributions
We have to forecast the loss distribution for the next year T + 1. The 
portfolio loss LT + 1 for this period is a random variable given by: 

	
LT +1 = Di ,T +1

i∈NT +1

∑ Lossi , T +1

	
(19)

The loss of each bond j in year T + 1 is modelled as the product of 
exposures at default (EAD) and LGD for each bond. The sum of 
the losses of the bonds for each borrower i leads to the borrower’s 
loss, Lossi, T + 1.

The portfolio loss can also be expressed as a portion of the total 
exposure:
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Here, the EAD are assumed to be fixed. NT + 1 is the set of all 
borrowers who are in the portfolio at the beginning of year T + 1. 
The PDs and the LGDs are modelled by (6) and (11), respectively. 
The unknown parameters in the models are replaced by the 
corresponding maximum-likelihood estimates.

The predicted loss distribution for year T + 1 is determined by 
simulation. We proceed as follows:
n �Step 1. A random realisation fT + 1 of the unobservable systematic 

risk factor is drawn from a standard normal distribution.
n �Step 2. Using the values of xiT and z1, T, we calculate the 

predictions of the conditional PD l^ i, T + 1( fT + 1), i ∈ NT + 1. 
According to the conditional independence, NT + 1 Bernoulli 
events are generated with conditional PDs l^ i, T + 1( fT + 1).

n �Step 3. The predicted conditional transformed LGD y^ T + 1( j) 
( fT + 1), j = 1, ... , mT + 1 is calculated for all mT + 1 defaulted 
borrowers using the observed values of vT( j) and z2, T and mT + 1-
variate normal distribution with mean vector (14) and 
covariance matrix (15). Then y^ T + 1( j)( fT + 1) is retransformed to 
obtain the conditional LG^ DT + 1( j)( fT + 1).

n �Step 4. Taking into account the relevant EAD and the 
predicted LGDs, the portfolio loss realisation is calculated.

11 �The bias can been seen if there is a positive correlation between defaults and LGD. During a recession, 
PDs increase, leading to more defaults. LGDs are also higher in a recession if defaults and LGD are 
correlated. In economic booms, PDs decrease, leading to fewer defaults. LGDs also decrease, but occur 
only in the event of a default. These lower LGDs are therefore under-represented, leading to an upward 
bias in the separate estimation of LGD.

12 The results of the simulation studies can be obtained from the authors.
13 �The estimation of the parameters of (18) can be done in SAS using PROC IML and the CALL NLPQN 

and CALL NLPFDD routines to calculate parameter estimates and the Hesse matrix.

...

...
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n �Steps 1 through 4 are repeated five million times, and the loss 
distribution of the portfolio is calculated.

For the empirical loss distribution, expected loss and risk measures 
such as unexpected loss, VAR or CVAR are easily obtained.14 

The data
We use data from Moody’s Default Risk Service database. The 
data set contains information about issuers and debt rated by 
Moody’s since 1970. If an issuer defaults several times, only the 
first default event is included in the PD and LGD data set.

Since Moody’s changed its rating methodology in 1982, we use 
data from 1982–2003 for the PD and the LGD data set.15 To 
obtain a homogeneous data set, the data is restricted to issuers 
domiciled in the US. This restriction is necessary because 
economic development is not the same in different countries. 
Thus we would either have to use different systematic risk factors 
for each country or restrict the data set to only one country. 

Obligors are grouped into different sectors (referenced as ‘broad 
industries’ by Moody’s). As default rate, and therefore recovery 
observation, is scarce in financial sectors such as ‘banking’, 
‘finance’, etc., and in sectors such as ‘sovereign’ or ‘public utility’, 
only data from the ‘industrial’, ‘transportation’ and ‘other non-
bank’ sectors is used. These last three sectors are referred to as the 
aggregated sector ‘industry’ in this article. The data set contains 
about 3,800 rated issuers with about 27,500 observations. It 
mainly contains rating information and other issuer-specific 
information such as finer sectoral classification, default rate per 
year, etc.

The recovery rate, and thus LGD, can be observed directly 
from the price of the defaulted debt approximately one month 
after default. This is Moody’s definition of the recovery rate, 
which is known as market recovery rate in the literature. The 
LGD in per cent is calculated as 100 minus the price of the 
defaulted bond, that is, 100 minus the recovery. Information 
about debt includes loans, bonds and preferred stock from issuers 
of different countries. The aggregated sector ‘industry’ contains 
about 85% of all debt obligations, so – for the same reason as in 
the PD data set – the data was restricted to this sector. Obligors 
or bonds within this sector are assumed to be exposed to the same 
systematic risk factor. For the same reason, only bonds were used, 
and all loans or preferred stocks were eliminated from the data 
set. This is not a severe constraint as 90% of the debt obligations 
were classified as bonds.16 

Empirical analysis
We use two different models to calculate and forecast PD and 
LGD. Model A contains explanatory variables in the separate PD 
and LGD models (see (6) and (11)). Model B stands for the 
simultaneous approach including explanatory variables (see (16)). 
The resulting estimates for the PD and LGD model are presented 
in table A. As the bias is only present in the LGD parameters – 
especially in the constant term – the parameters of model A are 
only shown for the LGD model.

The results for the PD model can be interpreted as follows. 
Borrowers with a better issuer rating – for example with a rating 
of Aaa to Aa3 – have smaller estimated PDs than issuers with a 
rating of Caa or worse. The same relationship holds for the other 
rating classes. The better the rating class, the smaller the PD. If 
the interest rate of the federal funds with a time lag of one year 
increases, the estimated PD also increases. The same relationship 

holds for the default rate with a time lag of one year.
The parameter estimates of the LGD models A and B can be 

interpreted in the following way. A bond with a debt rating of 
Ba3 to B3 with a time lag of one year has a lower (transformed) 
LGD than a bond with debt rating of Caa to C. Senior unsecured 
bonds have a higher (transformed) LGD than senior secured 
bonds. The other seniority classes are interpreted equivalently. 
Bonds with a relative seniority of one have higher LGDs than 
those with a lower relative seniority.17 The longer the maturity, the 
higher the (transformed) LGD. The uncertainty of future cash 
flows may cause this coherence. The higher the volume of the 
defaulted bonds, the higher the (transformed) LGD. A higher 
volume of a defaulted bond leads to a higher supply in the market 
for defaulted bonds. This leads to a lower price and thus a higher 
LGD for this bond. The higher the default rate with a time lag of 
one year, the higher the LGD. This result can also be drawn back 
to supply and demand in the market for defaulted bonds.18  

Macroeconomic variables such as the lagged default rate try to 
explain cyclical variations of the LGD or the default rate. Here, 

14 �The VAR is defined as the quantile of the loss distribution at a certain level. The unexpected loss is 
defined as the difference between the VAR and the expected loss. The CVAR is defined as the conditional 
mean of losses greater than the respective VAR.

15 �In contrast to Frye (2000), we do not truncate our data after 1997 but treat the rating grades Caa and 
Caa1, Caa2 and Caa3 as a single (pooled) grade.

16 For a more detailed description of the data set, see Hamerle, Knapp & Wildenauer (2006).
17 �A subordinated bond of one borrower that also has senior unsecured bonds has a relative seniority of 

two, whereas a subordinated bond of another borrower that has a junior subordinated bond besides the 
subordinated one has a relative seniority of one.

18 �A detailed interpretation of the LGD parameters can be found in Hamerle, Knapp & Wildenauer 
(2006).

A. �Parameter estimates for models A and B for the PD 
and LGD model and the correlation parameter

Effect Model A Model B

Parameters for the PD model

Constant –1.7945*

Issuer rating Aaa to A3 (t – 1) –2.5870*

Issuer rating Baa1 to Baa3 (t – 1) –1.8141*

Issuer rating Ba1 to Ba3 (t – 1) –1.2678*

Issuer rating B1 to B3 (t – 1) –0.5770*

Interest rate Fed Fund (t – 1) 0.09333*

Default rate (%) (t – 1) 0.09769*

w 0.1334*

Parameters for the LGD model

Constant –0.8349* –1.7240*

Debt rating Ba3 to B3 (t – 1) –0.2039** –0.1912**

Seniority: senior unsecured 0.6041* 0.5806*

Seniority: senior subordinated 0.6926* 0.6648*

Seniority: subordinated and junior subordinated 1.0262* 1.0262*

Relative seniority: 2 and 3 0.4979* 0.4963*

Additional backing by a third party –0.2676** –0.2728**

Bond maturity (in years) 0.03402* 0.03607*

Volume of defaulted bonds ($ million) 0.001096* 0.001059*

Default rate (%) (t – 1) 0.1558** 0.1496**

b1 0.5358* 0.4849*

b2 1.3139* 1.3081*

r 0.6088**

* significant at 1% level, ** significant at 5% level
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the default rate can be seen as a proxy for the cyclical movements. 
The lagged default rate can explain PD and LGD better than 
other macroeconomic variables such as GDP growth or the 
unemployment rate.19 The bias in the LGD parameters can be 
seen when comparing the constants of models A and B. The 
estimate of the constant is smaller in model B.20 b1 denotes the 
impact of the systematic risk factor and b2 denotes the impact of 
the remaining idiosyncratic risk factor. 

The estimated correlation parameter r indicates a positive 
relationship between default and LGD.

Simulation results
Two different simulations are used to illustrate the effect using 
separate or simultaneous models to predict the portfolio loss. In 
simulation A, the separate models are used to predict defaults and 
LGDs, and the empirical correlation of the realisations of the 
systematic risk factors is taken into account.21 In simulation B, 
the simultaneous estimation procedure for PD and LGD is used.

We use a data set of 586 obligors that did not default at the end 
of 2003 in the adjusted Moody’s data set to predict the loss 

distribution for 2004.22 A portfolio is used where each obligor 
holds one bond that is worth its face value at default, and thus an 
EAD of $100.

We obtain the results shown in table B from simulations A 
and B. They are given as a percentage of the total exposure (see 
(20)).

A comparison of the values of the loss distribution in table B 
shows that the expected loss is higher in model A. This result can 
be attributed to the overestimation of LGD parameters, which 
finally leads to the overestimation of the portfolio loss. The VAR 
and the unexpected loss are also smaller for model B both for the 
99% and the 99.9% level. The CVAR is also smaller in model B. 
Hence the overestimation of the parameters of the LGD model 
leads to higher predicted LGDs and thus to higher predicted 
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B. Simulation results for models A and B
Model A Model B

Expected loss 2.26472% 1.73245%

VAR (99%) 5.01583% 4.13341%

VAR (99.9%) 6.33643% 5.34340%

Unexpected loss (99%) 2.75111% 2.40096%

Unexpected loss (99.9%) 4.07171% 3.61096%

CVAR (99%) 5.59054% 4.66208%

CVAR (99.9%) 6.88703% 5.85396%

Standard deviation 0.94414% 0.80622%
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losses. If the estimation bias is ignored, the economic loss is 
overestimated.

The loss distributions of simulations A and B are illustrated in 
figure 1.

Conclusion
In the past, only a few studies have carried out PD and LGD at 
the same time (see, for example, Frye (2000), Pykthin (2003), 
Düllmann & Trapp (2004) or Chava, Stefanescu & Turnbull, 
(2006)). They assume that PD and LGD are driven by a 
systematic risk factor that is the same for all issuers in the same 
year, and idiosyncratic factors that are different for all issuers 
and debt obligations.

In most empirical analysis concerning the link between PD 
and LGD, defaults and LGDs are positively correlated. This 
conclusion is drawn from the fact that, in the past, in an economic 
downturn, default and loss rates increased. Most of the authors 
therefore assume that the same systematic risk that affects PD 
also affects LGD. We generalise this approach by allowing 
different systematic risk factors to affect PD and LGD. The 
correlation between these systematic risk factors can be estimated 
empirically from historical data. Modelling PD and LGD 
separately leads to biased estimates in the LGD model. A 
simultaneous model is used here that generalises the approach of 
Rösch & Scheule (2005) for individual time-dependent data.

The systematic risk factors are split into an observable and an 
unobserved part by taking macroeconomic variables into account. 
We use a dynamic individual approach to model PD and LGD, 
including issuer- and bond-specific variables as well as the 
macroeconomic variables. Using this approach, we obtain more 
precise PD and LGD predictions, leading to more exact 
predictions of economic capital.

PD and LGD are estimated using US data from Moody’s 
Default Risk Service in the aggregated sector ‘industry’. The 
time-dependent issuer- and bond-specific and the macroeconomic 
variables are incorporated with a time lag of one year. Therefore, 
PD and LGD predictions for the next year can be made on the 
basis of values that are known at the time the prediction is made.

We use Monte Carlo simulation to calculate the impact of the 
dynamic individual approach for PD and LGD on economic 
capital. Using the parameter estimates from the simultaneous 
model, the parameters of the portfolio loss distribution, such as 
expected loss, VAR and CVAR, are smaller than those resulting 
from the separate PD and LGD model. Thus, neglecting this 
prediction bias using the separate models leads to the overestimation 
of economic loss, which may be costly for banks. n
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19 �Another way to incorporate cyclical effects might be to use a vector autoregressive model for Ft and Gt, 
(see McNeil & Wendin, 2005).

20 �This bias has been confirmed in a simulation study where the true values of the PD and LGD model are 
given to simulate a data set. In a next step, the parameters are estimated using the simulated data set.

21 �For simplicity, the PD parameters of the simultaneous model were used. This can be done as the PD 
parameters are not biased like the LGD parameters.

22 �The data set is adjusted to contain only US borrowers in the sector industry, as in the data set used for 
the model estimation.
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